Question
Download Solution PDFयदि a2 + b2 = 111 है, a × b = 27 है, और a > b है, तो \(\frac{a -b}{a+b}\) का मान ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
a2 + b2 = 111
a × b = 27
a > b
प्रयुक्त सूत्र:
(a - b)2 = a2 + b2 - 2ab
(a + b)2 = a2 + b2 + 2ab
गणनाएँ:
सबसे पहले, (a - b)2 का मान ज्ञात कीजिए:
(a - b)2 = a2 + b2 - 2ab
⇒ (a - b)2 = 111 - 2 × 27
⇒ (a - b)2 = 111 - 54
⇒ (a - b)2 = 57
चूँकि a > b है, इसलिए (a - b) धनात्मक होना चाहिए:
⇒ a - b = \(\sqrt{57}\)
अब, (a + b)2 का मान ज्ञात कीजिए:
(a + b)2 = a2 + b2 + 2ab
⇒ (a + b)2 = 111 + 2 × 27
⇒ (a + b)2 = 111 + 54
⇒ (a + b)2 = 165
यह मानते हुए कि a + b धनात्मक है (जैसा कि विकल्पों द्वारा निहित है):
⇒ a + b = \(\sqrt{165}\)
अब, \(\frac{a - b}{a + b}\) का मान ज्ञात कीजिए:
\(\frac{a - b}{a + b} = \frac{\sqrt{57}}{\sqrt{165}}\)
⇒ \(\frac{a - b}{a + b} = \sqrt{\frac{57}{165}}\)
इसलिए, \(\frac{a - b}{a + b}\) का मान \(\sqrt{\frac{57}{165}}\) है।
Last updated on Jul 22, 2025
-> RRB NTPC UG Exam Date 2025 released on the official website of the Railway Recruitment Board. Candidates can check the complete exam schedule in the following article.
-> SSC Selection Post Phase 13 Admit Card 2025 has been released @ssc.gov.in
-> TS TET Result 2025 has been declared on the official website @@tgtet.aptonline.in
-> The RRB NTPC Admit Card CBT 1 will be released on its official website for RRB NTPC Under Graduate Exam 2025.
-> The RRB NTPC 2025 Notification released for a total of 11558 vacancies. A total of 3445 Vacancies have been announced for Undergraduate posts while a total of 8114 vacancies are announced for Graduate-level posts in the Non-Technical Popular Categories (NTPC).
-> Prepare for the exam using RRB NTPC Previous Year Papers.