Let ๐ถ[0, 1] = { ๐‘“ โˆถ [0, 1] → โ„ โˆถ ๐‘“ is continuous}.

Consider the metric space (๐ถ[0,1], ๐‘‘), where

๐‘‘(๐‘“, ๐‘”) = sup{ |๐‘“(๐‘ฅ) − ๐‘”(๐‘ฅ)| โˆถ ๐‘ฅ ∈ [0, 1] } for ๐‘“, ๐‘” ∈ ๐ถ[0,1].

Let ๐‘“0 (๐‘ฅ) = 0 for all ๐‘ฅ ∈ [0,1] and

๐‘‹ = {๐‘“ ∈ (๐ถ[0, 1], ๐‘‘) โˆถ ๐‘‘(๐‘“0, ๐‘“) ≥ \(\frac{1}{2}\)}.

Let ๐‘“1, ๐‘“2 ∈ ๐ถ[0, 1] be defined by ๐‘“1(๐‘ฅ) = ๐‘ฅ and ๐‘“2 (๐‘ฅ) = 1 − ๐‘ฅ for all ๐‘ฅ ∈ [0,1].

Consider the following statements:

๐‘ƒ: ๐‘“1 is in the interior of ๐‘‹.

๐‘„: ๐‘“2 is in the interior of ๐‘‹.

Which of the following statements is correct? 

  1. ๐‘ƒ is TRUE and ๐‘„ is FALSE
  2. ๐‘ƒ is FALSE and ๐‘„ is TRUE
  3. Both ๐‘ƒ and ๐‘„ are FALSE
  4. Both ๐‘ƒ and ๐‘„ are TRUE

Answer (Detailed Solution Below)

Option 4 : Both ๐‘ƒ and ๐‘„ are TRUE

Detailed Solution

Download Solution PDF

Concept:

Given a subset A of a metric space M, its interior Aโ—ฆ is defined as the set of all points x ∈ A such that some open ball around x is a subset of A.

Explanation:

๐ถ[0, 1] = { ๐‘“ โˆถ [0, 1] → โ„ โˆถ ๐‘“ is continuous}

๐‘‘(๐‘“, ๐‘”) = sup{ |๐‘“(๐‘ฅ) − ๐‘”(๐‘ฅ)| โˆถ ๐‘ฅ ∈ [0, 1] } for ๐‘“, ๐‘” ∈ ๐ถ[0,1]

 ๐‘“0 (๐‘ฅ) = 0 for all ๐‘ฅ ∈ [0,1] and

๐‘‹ = {๐‘“ ∈ (๐ถ[0, 1], ๐‘‘) โˆถ ๐‘‘(๐‘“0, ๐‘“) ≥ \(\frac{1}{2}\)}.

๐‘“1(๐‘ฅ) = ๐‘ฅ 

Now, ๐‘‘(๐‘“1, ๐‘“0) = sup{ |x − 0| โˆถ ๐‘ฅ ∈ [0, 1] }  = sup{ |x| โˆถ ๐‘ฅ ∈ [0, 1] } = 1 > \(\frac{1}{2}\)

So, ๐‘“∈ Xโ—ฆ

i.e., ๐‘“1 is in the interior of ๐‘‹.

Also, ๐‘“2 (๐‘ฅ) = 1 − ๐‘ฅ  

๐‘‘(๐‘“2, ๐‘“0) = sup{ |1- x − 0| โˆถ ๐‘ฅ ∈ [0, 1] } = sup{ |1 - x| โˆถ ๐‘ฅ ∈ [0, 1] } = 1 > \(\frac{1}{2}\)

So, ๐‘“∈ Xโ—ฆ

i.e., ๐‘“2 is in the interior of ๐‘‹.

∴ Both ๐‘ƒ and ๐‘„ are TRUE

(4) is correct

More Analysis Questions

Get Free Access Now
Hot Links๏ผš teen patti go teen patti master king lotus teen patti