Question
Download Solution PDFConsider the metrics ๐1 and ๐2 on โ, defined by
๐1 (๐ฅ, ๐ฆ) = |๐ฅ − ๐ฆ| and ๐2 (๐ฅ, ๐ฆ) = \(\rm \left\{\begin{matrix}0,& if\ x=y\\\ 1,&if\ x\ne y\end{matrix}\right.\)
Let ๐ = {๐ ∈ โ โถ ๐ ≥ 3} and ๐ = { ๐ + \(\frac{1}{n}\) โถ ๐ ∈ โ}.
Define ๐: ๐ ∪ ๐ → โ by ๐(๐ฅ) = \(\rm \left\{\begin{matrix}2,& if\ xโ X\\\ 3,&if\ xโ Y\end{matrix}\right.\)
Consider the following statements:
๐: The function ๐: (๐ ∪ ๐, ๐1 ) → (โ, ๐1) is uniformly continuous.
๐: The function ๐: (๐ ∪ ๐, ๐2 ) → (โ, ๐1) is uniformly continuous.
Then
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
(i) Uniformly continuous: A function f: X → Y is said to be uniformly continuous if, for every ฯต > 0, there exists a δ > 0 such that for every x, y ∈ X, |x - y| < δ ⇒ |f(x) - f(y)| < ฯต
(ii) Any function from a discrete metric space to any other metric space is uniformly continuous.
Explanation:
๐ = {๐ ∈ โ โถ ๐ ≥ 3} and ๐ = { ๐ + \(\frac{1}{n}\) โถ ๐ ∈ โ}
So, X = {3, 4, 5, 6, ...} and Y = {\(2, 2\frac{1}{2}, 3\frac{1}{3}, 4\frac{1}{4}, ...\)}
X ∪ Y contain all the natural numbers and ๐ + \(\frac{1}{n}\), ๐ ∈ โ
๐: ๐ ∪ ๐ → โ by ๐(๐ฅ) = \(\rm \left\{\begin{matrix}2,& if\ xโ X\\\ 3,&if\ xโ Y\end{matrix}\right.\)
๐1 (๐ฅ, ๐ฆ) = |๐ฅ − ๐ฆ| and ๐2 (๐ฅ, ๐ฆ) = \(\rm \left\{\begin{matrix}0,& if\ x=y\\\ 1,&if\ x\ne y\end{matrix}\right.\)
So, ๐1 is the usual metric and ๐2 is a discrete metric
Hence by concept (ii), ๐: (๐ ∪ ๐, ๐2 ) → (โ, ๐1) is uniformly continuous.
Q is true
For P,
๐: ๐ ∪ ๐ → โ by ๐(๐ฅ) = \(\rm \left\{\begin{matrix}2,& if\ xโ X\\\ 3,&if\ xโ Y\end{matrix}\right.\)
Let x ∈ X and y ∈ Y then
|f(x) - f(y)| = |2 - 3| = 1 \(\nless\) ฯต for |x - y| < δ
Hence ๐: (๐ ∪ ๐, ๐1 ) → (โ, ๐1) is not uniformly continuous.
P is false
∴ ๐ is FALSE and ๐ is TRUE
(2) is correct