Consider the metrics ๐œŒ1 and ๐œŒ2 on โ„, defined by

๐œŒ1 (๐‘ฅ, ๐‘ฆ) = |๐‘ฅ − ๐‘ฆ| and ๐œŒ2 (๐‘ฅ, ๐‘ฆ) = \(\rm \left\{\begin{matrix}0,& if\ x=y\\\ 1,&if\ x\ne y\end{matrix}\right.\)

Let ๐‘‹ = {๐‘› ∈ โ„• โˆถ ๐‘› ≥ 3} and ๐‘Œ = { ๐‘› + \(\frac{1}{n}\) โˆถ ๐‘› ∈ โ„•}.

Define ๐‘“: ๐‘‹ ∪ ๐‘Œ → โ„ by ๐‘“(๐‘ฅ) = \(\rm \left\{\begin{matrix}2,& if\ xโˆˆ X\\\ 3,&if\ xโˆˆ Y\end{matrix}\right.\)

Consider the following statements:

๐‘ƒ: The function ๐‘“: (๐‘‹ ∪ ๐‘Œ, ๐œŒ1 ) → (โ„, ๐œŒ1) is uniformly continuous.

๐‘„: The function ๐‘“: (๐‘‹ ∪ ๐‘Œ, ๐œŒ2 ) → (โ„, ๐œŒ1) is uniformly continuous.

Then 

  1. ๐‘ƒ is TRUE and ๐‘„ is FALSE
  2. ๐‘ƒ is FALSE and ๐‘„ is TRUE
  3. both ๐‘ƒ and ๐‘„ are FALSE
  4. both ๐‘ƒ and ๐‘„ are TRUE

Answer (Detailed Solution Below)

Option 2 : ๐‘ƒ is FALSE and ๐‘„ is TRUE

Detailed Solution

Download Solution PDF

Concept:

(i) Uniformly continuous: A function f: X → Y is said to be uniformly continuous if, for every ฯต > 0, there exists a δ > 0 such that for every x, y ∈ X, |x - y| < δ ⇒ |f(x) - f(y)| < ฯต 

(ii) Any function from a discrete metric space to any other metric space is uniformly continuous.

Explanation:

๐‘‹ = {๐‘› ∈ โ„• โˆถ ๐‘› ≥ 3} and ๐‘Œ = { ๐‘› + \(\frac{1}{n}\) โˆถ ๐‘› ∈ โ„•}

So, X = {3, 4, 5, 6, ...} and Y = {\(2, 2\frac{1}{2}, 3\frac{1}{3}, 4\frac{1}{4}, ...\)}

X ∪ Y contain all the natural numbers and  ๐‘› + \(\frac{1}{n}\), ๐‘› ∈ โ„• 

๐‘“: ๐‘‹ ∪ ๐‘Œ → โ„ by ๐‘“(๐‘ฅ) = \(\rm \left\{\begin{matrix}2,& if\ xโˆˆ X\\\ 3,&if\ xโˆˆ Y\end{matrix}\right.\)

๐œŒ(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ − ๐‘ฆ| and ๐œŒ2 (๐‘ฅ, ๐‘ฆ) = \(\rm \left\{\begin{matrix}0,& if\ x=y\\\ 1,&if\ x\ne y\end{matrix}\right.\)

So, ๐œŒ1 is the usual metric and ๐œŒ2 is a discrete metric

Hence by concept (ii),  ๐‘“: (๐‘‹ ∪ ๐‘Œ, ๐œŒ2 ) → (โ„, ๐œŒ1) is uniformly continuous.

Q is true

For P, 

๐‘“: ๐‘‹ ∪ ๐‘Œ → โ„ by ๐‘“(๐‘ฅ) = \(\rm \left\{\begin{matrix}2,& if\ xโˆˆ X\\\ 3,&if\ xโˆˆ Y\end{matrix}\right.\)

Let x ∈ X and y ∈ Y then 

|f(x) - f(y)| = |2 - 3| = 1 \(\nless\) ฯต for |x - y| < δ 

Hence ๐‘“: (๐‘‹ ∪ ๐‘Œ, ๐œŒ1 ) → (โ„, ๐œŒ1) is not uniformly continuous.

P is false

∴ ๐‘ƒ is FALSE and ๐‘„ is TRUE

(2) is correct

More Metric Spaces Questions

More Analysis Questions

Get Free Access Now
Hot Links๏ผš teen patti 100 bonus teen patti cash game teen patti master 2023 teen patti bonus teen patti king