Let โ„“2 = {(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, … ) โˆถ ๐‘ฅ๐‘› ∈ โ„ for all ๐‘› ∈ โ„• and \(\rm \Sigma_{n=1}^\infty x_n^2<\infty \}\)

For a sequence (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, … ) ∈ โ„“2 , define โ€–(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, … )โ€–2\(\rm (\Sigma_{n=1}^\infty x_n^2)^{\frac{1}{2}}\)

Let ๐‘† โˆถ (โ„“2 , โ€–⋅โ€–2) → (โ„“2 , โ€–⋅โ€–2) and ๐‘‡ โˆถ (โ„“2 , โ€–⋅โ€–2) → (โ„“2 , โ€–⋅โ€–2) be defined by

๐‘†(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, … ) = (๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, … ), where ๐‘ฆ๐‘› = \(\rm \left\{\begin{matrix}0,&n=1\\\ x_{n-1},& n\ge2\end{matrix}\right.\)

๐‘‡(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, … ) = (๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3, … ), where ๐‘ฆ๐‘›\(\rm \left\{\begin{matrix}0,&n\ is\ odd\\\ x_{n},& n\ is\ even\end{matrix}\right.\)

Then

  1. ๐‘† is a compact linear map and ๐‘‡ is NOT a compact linear map
  2. ๐‘† is NOT a compact linear map and ๐‘‡ is a compact linear map
  3. both ๐‘† and ๐‘‡ are compact linear maps 
  4. NEITHER ๐‘† NOR ๐‘‡ is a compact linear map

Answer (Detailed Solution Below)

Option 4 : NEITHER ๐‘† NOR ๐‘‡ is a compact linear map

Detailed Solution

Download Solution PDF

Explanation -

The correct option is (4).

More Analysis Questions

Get Free Access Now
Hot Links๏ผš teen patti gold real cash teen patti bliss teen patti rummy teen patti star apk teen patti octro 3 patti rummy