Question
Download Solution PDFLet โ2 = {(๐ฅ1, ๐ฅ2, ๐ฅ3, … ) โถ ๐ฅ๐ ∈ โ for all ๐ ∈ โ and \(\rm \Sigma_{n=1}^\infty x_n^2<\infty \}\)
For a sequence (๐ฅ1, ๐ฅ2, ๐ฅ3, … ) ∈ โ2 , define โ(๐ฅ1, ๐ฅ2, ๐ฅ3, … )โ2 = \(\rm (\Sigma_{n=1}^\infty x_n^2)^{\frac{1}{2}}\)
Let ๐ โถ (โ2 , โ⋅โ2) → (โ2 , โ⋅โ2) and ๐ โถ (โ2 , โ⋅โ2) → (โ2 , โ⋅โ2) be defined by
๐(๐ฅ1, ๐ฅ2, ๐ฅ3, … ) = (๐ฆ1, ๐ฆ2, ๐ฆ3, … ), where ๐ฆ๐ = \(\rm \left\{\begin{matrix}0,&n=1\\\ x_{n-1},& n\ge2\end{matrix}\right.\)
๐(๐ฅ1, ๐ฅ2, ๐ฅ3, … ) = (๐ฆ1, ๐ฆ2, ๐ฆ3, … ), where ๐ฆ๐ = \(\rm \left\{\begin{matrix}0,&n\ is\ odd\\\ x_{n},& n\ is\ even\end{matrix}\right.\)
Then
Answer (Detailed Solution Below)
Option 4 : NEITHER ๐ NOR ๐ is a compact linear map
Detailed Solution
Download Solution PDFExplanation -
The correct option is (4).