Solution of Differential Equations MCQ Quiz - Objective Question with Answer for Solution of Differential Equations - Download Free PDF
Last updated on Jul 15, 2025
Latest Solution of Differential Equations MCQ Objective Questions
Solution of Differential Equations Question 1:
Let y = y(t) be a solution of the differential equation \(\frac{\mathrm{dy}}{\mathrm{dt}}+\alpha \mathrm{y}=\gamma \mathrm{e}^{-\beta \mathrm{t}}\) Where , α > 0, β > 0 and γ > 0. Then \( \rm \displaystyle {Lim}_{t \rightarrow \infty} y(t)\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 1 Detailed Solution
Calculation:
\(\frac{\mathrm{dy}}{\mathrm{dt}}+\alpha \mathrm{y}=\gamma \mathrm{e}^{-\beta \mathrm{t}} \)
\(\text { I.F. }=\mathrm{e}^{\int \alpha \mathrm{dt}}=\mathrm{e}^{\alpha \mathrm{t}} \)
\(\text { Solution } \Rightarrow \mathrm{y} \cdot \mathrm{e}^{\alpha \mathrm{t}}=\int \gamma \mathrm{e}^{-\beta \mathrm{T}} \cdot \mathrm{e}^{\alpha \mathrm{t}} \mathrm{dt} \)
\(\Rightarrow \mathrm{ye}^{\alpha \mathrm{t}}=\gamma \frac{\mathrm{e}^{(\alpha-\beta) \mathrm{t}}}{(\alpha-\beta)}+\mathrm{c} \)
\(\Rightarrow \mathrm{y}=\frac{\gamma}{\mathrm{e}^{\beta \mathrm{t}}(\alpha-\beta)}+\frac{\mathrm{c}}{\mathrm{e}^{\alpha \mathrm{t}}}\)
So, \(\rm \displaystyle \lim _{t \rightarrow \infty} y(t)=\frac{\gamma}{\infty}+\frac{c}{\infty}=0\)
Hence, the correct answer is Option 1.
Solution of Differential Equations Question 2:
If \(\frac{d y}{d x}\) + 2y sec 2x = 2 sec 2x + 3 tan x sec 2x and f(0) = \(\frac{5}{4}\). Then the value of 12\(\left(y\left(\frac{\pi}{4}\right)-\frac{1}{e^{2}}\right)\) equal to
Answer (Detailed Solution Below) 21
Solution of Differential Equations Question 2 Detailed Solution
Explanation:
\(\frac{d y}{d x}\) + 2y sec2x = 2sec2x + 3 tan x sec2x
I.F. = \(e^{\int 2 \sec ^{2} x d x}\)
I.F. = e2tanx
\(y \cdot e^{2 \tan x}=\int e^{2 \tan x}(2+3 \tan x) \sec ^{2} x d x\)
Put tan x = u
sec2xdx = du
\(y \cdot e^{2 u}=\int e^{2 u}(2+3 u) d u\)
\(y \cdot e^{2 u} \Rightarrow \frac{2 e^{2 u}}{2}+3 \int e^{2 u} \cdot u d u\)
\(y \cdot e^{2 u}=e^{2 u}+3\left[\frac{u e^{2 u}}{2}-\int \frac{e^{2 u}}{2}\right]\)
\(y e^{2 u}=e^{2 u}+3\left[\frac{u e^{2 u}}{2}-\frac{e^{2 u}}{4}\right]+C\)
\(y e^{2 \tan x}=e^{2 \tan x}+3\left[\frac{\tan x e^{2 \tan x}}{2}-\frac{e^{2 \tan x}}{4}\right]+C\)
F(0) = \(\frac{5}{4}\)
\(\frac{5}{4}=1-\frac{3}{4}+C\)
\(\frac{5}{4}-\frac{1}{4}=C\)
1 = C
\(y=1+3\left(\frac{\tan x}{2}-\frac{1}{4}\right)+1 \cdot e^{-2 \tan x}\)
\(y\left(\frac{\pi}{4}\right)=1+3\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{e^{2}}\)
\(y\left(\frac{\pi}{4}\right)=\frac{7}{4}+\frac{1}{e^{2}}\)
\(12\left(y\left(\frac{x}{4}\right)-\frac{1}{e^{2}}\right)=12\left(\frac{7}{4}+\frac{1}{e^{2}}-\frac{1}{e^{2}}\right)\) = 21
Solution of Differential Equations Question 3:
Let y = y(x) be the solution curve of the differential equation \(\rm \frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}\left(1+\log _{e} x\right)\right)\), x > 0, y(1) = 3. Then \(\frac{\mathrm{y}^{2}(\mathrm{x})}{9}\) is equal to :
Answer (Detailed Solution Below)
Solution of Differential Equations Question 3 Detailed Solution
Calculation:
\(\rm \frac{d y}{d x}-\frac{y}{x}=y^{3}\left(1+\log _{e} x\right)\)
⇒ \(\rm \frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{x y^{2}}=1+\log _{e} x\)
Let \(-\frac{1}{\mathrm{y}^{2}}=\mathrm{t} \Rightarrow \frac{2}{\mathrm{y}^{3}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}\)
∴ \(\rm \frac{d t}{d x}+\frac{2 t}{x}=2\left(1+\log _{e} x\right)\)
\(\text { I.F. }=\mathrm{e}^{\int \frac{2}{\mathrm{x}} \mathrm{dx}}=\mathrm{x}^{2}\)
⇒ \(\rm \frac{-x^{2}}{y^{2}}=\frac{2}{3}\left(\left(1+\log _{e} x\right) x^{3}-\frac{x^{3}}{3}\right)+C \)
y(1) = 3
\(\rm \frac{y^{2}}{9}=\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
Hence, the correct answer is Option 1.
Solution of Differential Equations Question 4:
Let g be a differentiable function such that \( \int_0^x g(t) dt = x - \int_0^x tg(t) dt, x \geq 0 \) and let y = y(x) satisfy the differential equation \(\frac{dy}{dx} - \) y tanx = 2 (x + 1) secx g(x), \(x \in \left[ 0, \frac{\pi}{2} \right] \). If y (0) = 0, then \(y [\frac{\pi}{3}]\) is equal to
Answer (Detailed Solution Below)
Solution of Differential Equations Question 4 Detailed Solution
Calculation:
Diff w.r.t x
⇒ \(g(x) = 1 - x g(x)\)
⇒ \(g(x) = \frac{1}{1 + x}\)
\(\text{so } \frac{dy}{dx} - y \tan x = 2 \sec x g(x) = 2 \sec x \left(\frac{1}{1+x}\right)\)
⇒ \(\frac{dy}{dx} - y \tan x = \frac{2 \sec x}{1 + x}\)
\(\text{IF} = e^{\int -\tan x \, dx} = e^{\log |\cos x|} = |\cos x| = \cos x \quad \left(x \in \left[0, \frac{\pi}{2}\right)\right) \)
Solution of D.E
⇒ \(y \cos x = \int \frac{2 \sec x}{1 + x} \cdot \cos x \, dx + c\)
⇒ \(y \cos x = \int \frac{2}{1 + x} \, dx + c\)
⇒ \(y \cos x = 2 \log |1 + x| + c\)
⇒ \(y(0) = 0 \implies 0 \cdot \cos 0 = 2 \log |1 + 0| + c\)
⇒ \(0 = 2 \log 1 + c \implies 0 = 0 + c \implies c = 0\)
⇒ \(y \cos x = 2 \log (1 + x)\)
⇒ \(y = \frac{2 \log(1 + x)}{\cos x} = 2 \sec x \log(1 + x)\)
⇒ \(y\left(\frac{\pi}{3}\right) = 2 \sec \left(\frac{\pi}{3}\right) \log\left(1 + \frac{\pi}{3}\right)\)
⇒ \(y\left(\frac{\pi}{3}\right) = 2 \cdot 2 \cdot \log \left(\frac{3 + \pi}{3}\right) = 4 \log \left(\frac{3 + \pi}{3}\right)\)
Hence, the Correct answer is Option 2
Solution of Differential Equations Question 5:
The general solution of the differential equation \(x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)\) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 5 Detailed Solution
Calculation
Given equation: \(x\frac{dy}{dx} = y + x \tan(\frac{y}{x})\)
Divide by x: \(\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})\)
Let y = vx, then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)
Substitute in the equation:
\(v + x\frac{dv}{dx} = v + \tan(v)\)
⇒ \(x\frac{dv}{dx} = \tan(v)\)
⇒ \(\frac{dv}{\tan(v)} = \frac{dx}{x}\)
⇒ \(\cot(v) dv = \frac{dx}{x}\)
Integrate both sides:
\(\int \cot(v) dv = \int \frac{dx}{x}\)
⇒ \(\ln|\sin(v)| = \ln|x| + \ln|C|\)
⇒ \(\ln|\sin(v)| = \ln|Cx|\)
Remove the logarithms:
⇒ \(\sin(v) = Cx\)
Substitute v = y/x:
⇒ \(\sin(\frac{y}{x}) = Cx\)
∴ The general solution is \(\sin(\frac{y}{x}) = Cx\).
Hence option 2 is correct
Top Solution of Differential Equations MCQ Objective Questions
The solution of the differential equation dy = (1 + y2) dx is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle \int \frac{dx}{1+x^2} = \tan^{-1} x + c\)
Calculation:
Given: dy = (1 + y2) dx
\(\rm \Rightarrow \frac{dy}{1+y^2}=dx\)
Integrating both sides, we get
\(\rm \Rightarrow \displaystyle \int \frac{dy}{1+y^2}=\displaystyle \int dx\\\rm \Rightarrow \tan^{-1} y = x + c \)
⇒ y = tan (x + c)
∴ The solution of the given differential equation is y = tan (x + c).
If x2 + y2 + z2 = xy + yz + zx and x = 1, then find the value of \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 7 Detailed Solution
Download Solution PDFGiven:
x = 1
x2 + y2 + z2 = xy + yz + zx
Calculations:
x2 + y2 + z2 - xy - yz - zx = 0
⇒(1/2)[(x - y)2 + (y - z)2 + (z - x)2] = 0
⇒x = y , y = z and z = x
But x = y = z = 1
so, \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)
= {10(1)4 + 5(1)4 + 7(1)4}/{13(1)2(1)2+ 6(1)2(1)2 + 3(1)2(1)2}
= 22/22
= 1
Hence, the required value is 1.
What is the solution of the differential equation \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0?\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 8 Detailed Solution
Download Solution PDFCalculation:
Given: \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0\)
\( \Rightarrow \ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) = {\rm{a}}\)
\(\Rightarrow \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {{\rm{e}}^{\rm{a}}}\)
\(\Rightarrow {\rm{\;}}\smallint \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \smallint {{\rm{e}}^{\rm{a}}}\)
On integrating both sides, we get
⇒ y = xea + c
Find general solution of \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 9 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{x}dx = \log x + c\)
\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)
Calculation:
Given: \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)
\(\Rightarrow \rm xy \frac {dy}{dx} =1 \)
\(\Rightarrow \rm y \;dy=\frac {dx}{x} \)
Integrating both sides, we get
\(\rm \Rightarrow \frac{y^2}{2} = \log x + c\)
If x + \(\frac{1}{2x}\) = 3, then evaluate 8x3 + \(\rm \frac{1}{x^3}\).
Answer (Detailed Solution Below)
Solution of Differential Equations Question 10 Detailed Solution
Download Solution PDFGiven:
x + \(\frac{1}{2x}\) = 3
Concept Used:
Simple calculations is used
Calculations:
⇒ x + \(\frac{1}{2x}\) = 3
On multiplying 2 on both sides, we get
⇒ 2x + \(\frac{1}{x}\) = 6 .................(1)
Now, On cubing both sides,
⇒ \((2x + \frac{1}{x})^3 = 6^3\)
⇒ \(8x^3 + \frac{1}{x^3} + 3(4x^2)(\frac{1}{x})+3(2x)(\frac{1}{x^2})=216\)
⇒ \(8x^3 + \frac{1}{x^3} + 12x+\frac{6}{x}=216\)
⇒ \(8x^3 + \frac{1}{x^3}= 216 - 6(2x+\frac{1}{x})\)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 6(6)\) ..............from (1)
⇒ \(8x^3 + \frac{1}{x^3}= 216- 36\)
⇒ \(8x^3 + \frac{1}{x^3}= 180\)
⇒ Hence, The value of the above equation is 180
The solution of differential equation \(\rm dy = \left ( 4 + y^{2} \right )dx\) is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 11 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{a^{2}+x^{2}}dx = \frac{1}{a}\tan ^{-1}\frac{x}{a}+ C\)
Calculation:
Given : \(\rm dy = \left ( 4 + y^{2} \right )dx\)
⇒ \(\rm \frac{dy}{4+y^{2}}= dx\)
Integrating both sides, we get
\(\rm \int \frac{dy}{2^{2}+y^{2}}= \int dx\)
⇒ \(\rm \frac{1}{2}\tan^{-1}\frac{y}{2}= x+c\)
⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ 2c\)
⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ C\) [∵ 2c = C]
⇒ \(\rm \frac{y}{2}= \tan(2x+ C)\)
\(\rm y = 2\tan \left ( 2x+C \right )\)
The correct option is 2 .
The solution of \(\rm {dx\over dt}= 3x+8\) will be
Answer (Detailed Solution Below)
Solution of Differential Equations Question 12 Detailed Solution
Download Solution PDFConcept:
Some useful formulas are:
\(\rm \int{dx\over ax}={1\over a}logx+c\)
If log x = z then we can write x = ez
Calculation:
\(\rm {dx\over dt}= 3x+8\)
Rearranging the equation and integrating we get,
⇒\(\rm \int{dx\over 3x+8}=\int dt\)
⇒\(\rm {1\over 3 }log({3x+8})=t+c\), c = constant of integration
⇒ log(3x + 8) = 3(t + c)
⇒ 3x + 8 = e3(t+c)
⇒ 3x = e3(t+c) - 8
∴ \(\rm x ={ 1\over 3}e^{3(t+c)}-{8\over 3}\)
The solution of the differential equation dy = \(\rm \sqrt{1-y^2}\) dx is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 13 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{dx}{\sqrt{a^{2}-x^{2}}}= sin^{-1}\frac{x}{a}\)
Calculation:
Given: dy = \(\rm \sqrt{1-y^2}\) dx
⇒ \(\rm \frac{dy}{\sqrt{1^{2}-y^{2}}} = dx\)
Integrating both sides, we get
⇒ \(\rm \int \frac{dy}{\sqrt{1^{2}-y^{2}}} =\int dx\)
⇒ \(\rm sin^{-1}\left ( y \right )\) = x + c
⇒ y = sin ( x + c ) .
The correct option is 2.
The solution of the differential equation \(\rm y \frac {dy}{dx} \) = x + 1 is
Answer (Detailed Solution Below)
Solution of Differential Equations Question 14 Detailed Solution
Download Solution PDFCalculation:
Given: \(\rm y \frac {dy}{dx} = x + 1\)
⇒ ydy = (x + 1) dx
Integrating both sides, we get
⇒ ∫ ydy = ∫ (x + 1) dx
⇒ \(\rm \frac {y^2}{2} = \rm \frac {x^2}{2} + x + c \)
⇒ y2 = x2 + 2x + 2c
∴ y2 - x2 - 2x - c = 0
Please note: c is constant here, so 2c can be also considered as a constant.
Find general solution of \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)
Answer (Detailed Solution Below)
Solution of Differential Equations Question 15 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a} + c\)
\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)
Calculation:
Given: \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)
\(\rm \Rightarrow \frac{dx}{(1+x^2)} = (1+y^2)dy\)
\(\rm \Rightarrow (1+y^2)dy=\frac{dx}{(1+x^2)} \)
Integrating both sides, we get
\(\rm \Rightarrow \int (1+y^2)dy=\int \frac{dx}{(1+x^2)} \)
\(\rm \Rightarrow y+\frac{y^3}{3} = \tan^{-1}x + c\)