Solution of Differential Equations MCQ Quiz - Objective Question with Answer for Solution of Differential Equations - Download Free PDF

Last updated on Jul 15, 2025

Latest Solution of Differential Equations MCQ Objective Questions

Solution of Differential Equations Question 1:

Let y = y(t) be a solution of the differential equation \(\frac{\mathrm{dy}}{\mathrm{dt}}+\alpha \mathrm{y}=\gamma \mathrm{e}^{-\beta \mathrm{t}}\) Where , α > 0, β > 0 and γ > 0. Then \( \rm \displaystyle {Lim}_{t \rightarrow \infty} y(t)\)

  1. is 0
  2. does not exist
  3. is 1
  4. is –1

Answer (Detailed Solution Below)

Option 1 : is 0

Solution of Differential Equations Question 1 Detailed Solution

Calculation: 

\(\frac{\mathrm{dy}}{\mathrm{dt}}+\alpha \mathrm{y}=\gamma \mathrm{e}^{-\beta \mathrm{t}} \)

\(\text { I.F. }=\mathrm{e}^{\int \alpha \mathrm{dt}}=\mathrm{e}^{\alpha \mathrm{t}} \)

\(\text { Solution } \Rightarrow \mathrm{y} \cdot \mathrm{e}^{\alpha \mathrm{t}}=\int \gamma \mathrm{e}^{-\beta \mathrm{T}} \cdot \mathrm{e}^{\alpha \mathrm{t}} \mathrm{dt} \)

\(\Rightarrow \mathrm{ye}^{\alpha \mathrm{t}}=\gamma \frac{\mathrm{e}^{(\alpha-\beta) \mathrm{t}}}{(\alpha-\beta)}+\mathrm{c} \)

\(\Rightarrow \mathrm{y}=\frac{\gamma}{\mathrm{e}^{\beta \mathrm{t}}(\alpha-\beta)}+\frac{\mathrm{c}}{\mathrm{e}^{\alpha \mathrm{t}}}\)

So, \(\rm \displaystyle \lim _{t \rightarrow \infty} y(t)=\frac{\gamma}{\infty}+\frac{c}{\infty}=0\)

Hence, the correct answer is Option 1. 

Solution of Differential Equations Question 2:

If \(\frac{d y}{d x}\) + 2y sec 2x = 2 sec 2x + 3 tan x sec 2x and f(0) = \(\frac{5}{4}\).  Then the value of 12\(\left(y\left(\frac{\pi}{4}\right)-\frac{1}{e^{2}}\right)\) equal to

Answer (Detailed Solution Below) 21

Solution of Differential Equations Question 2 Detailed Solution

Explanation:

\(\frac{d y}{d x}\) + 2y sec2x = 2sec2x + 3 tan x sec2

I.F. = \(e^{\int 2 \sec ^{2} x d x}\)

I.F. = e2tanx

\(y \cdot e^{2 \tan x}=\int e^{2 \tan x}(2+3 \tan x) \sec ^{2} x d x\)

Put tan x = u

sec2xdx = du 

\(y \cdot e^{2 u}=\int e^{2 u}(2+3 u) d u\)

\(y \cdot e^{2 u} \Rightarrow \frac{2 e^{2 u}}{2}+3 \int e^{2 u} \cdot u d u\)

\(y \cdot e^{2 u}=e^{2 u}+3\left[\frac{u e^{2 u}}{2}-\int \frac{e^{2 u}}{2}\right]\)

\(y e^{2 u}=e^{2 u}+3\left[\frac{u e^{2 u}}{2}-\frac{e^{2 u}}{4}\right]+C\)

\(y e^{2 \tan x}=e^{2 \tan x}+3\left[\frac{\tan x e^{2 \tan x}}{2}-\frac{e^{2 \tan x}}{4}\right]+C\)

F(0) = \(\frac{5}{4}\)

\(\frac{5}{4}=1-\frac{3}{4}+C\)

\(\frac{5}{4}-\frac{1}{4}=C\)

1 = C

\(y=1+3\left(\frac{\tan x}{2}-\frac{1}{4}\right)+1 \cdot e^{-2 \tan x}\)

\(y\left(\frac{\pi}{4}\right)=1+3\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{e^{2}}\)

\(y\left(\frac{\pi}{4}\right)=\frac{7}{4}+\frac{1}{e^{2}}\)

\(12\left(y\left(\frac{x}{4}\right)-\frac{1}{e^{2}}\right)=12\left(\frac{7}{4}+\frac{1}{e^{2}}-\frac{1}{e^{2}}\right)\) = 21

Solution of Differential Equations Question 3:

Let y = y(x) be the solution curve of the differential equation \(\rm \frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}\left(1+\log _{e} x\right)\right)\), x > 0, y(1) = 3. Then \(\frac{\mathrm{y}^{2}(\mathrm{x})}{9}\) is equal to :  

  1. \(\rm \frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
  2. \(\rm \frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
  3. \(\rm \frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
  4. \(\rm \frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)

Solution of Differential Equations Question 3 Detailed Solution

Calculation: 

\(\rm \frac{d y}{d x}-\frac{y}{x}=y^{3}\left(1+\log _{e} x\right)\)

⇒ \(\rm \frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{x y^{2}}=1+\log _{e} x\)

Let \(-\frac{1}{\mathrm{y}^{2}}=\mathrm{t} \Rightarrow \frac{2}{\mathrm{y}^{3}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}\)

∴ \(\rm \frac{d t}{d x}+\frac{2 t}{x}=2\left(1+\log _{e} x\right)\)

\(\text { I.F. }=\mathrm{e}^{\int \frac{2}{\mathrm{x}} \mathrm{dx}}=\mathrm{x}^{2}\)

⇒ \(\rm \frac{-x^{2}}{y^{2}}=\frac{2}{3}\left(\left(1+\log _{e} x\right) x^{3}-\frac{x^{3}}{3}\right)+C \)

y(1) = 3

\(\rm \frac{y^{2}}{9}=\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)

Hence, the correct answer is Option 1. 

Solution of Differential Equations Question 4:

Let g be a differentiable function such that \( \int_0^x g(t) dt = x - \int_0^x tg(t) dt, x \geq 0 \) and let y = y(x) satisfy the differential equation \(\frac{dy}{dx} - \) y tanx = 2 (x + 1) secx g(x), \(x \in \left[ 0, \frac{\pi}{2} \right] \).  If y (0) = 0, then  \(y [\frac{\pi}{3}]\) is equal to

  1. \(\frac{2\pi}{3\sqrt{3}}\)
  2. \(\frac{4\pi}{3} \)
  3. \(\frac{2\pi}{3} \qquad\)
  4. \(\frac{4\pi}{3\sqrt{3}}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{4\pi}{3} \)

Solution of Differential Equations Question 4 Detailed Solution

Calculation:

Diff w.r.t x

⇒ \(g(x) = 1 - x g(x)\)

⇒ \(g(x) = \frac{1}{1 + x}\)

\(\text{so } \frac{dy}{dx} - y \tan x = 2 \sec x g(x) = 2 \sec x \left(\frac{1}{1+x}\right)\)

⇒ \(\frac{dy}{dx} - y \tan x = \frac{2 \sec x}{1 + x}\)

\(\text{IF} = e^{\int -\tan x \, dx} = e^{\log |\cos x|} = |\cos x| = \cos x \quad \left(x \in \left[0, \frac{\pi}{2}\right)\right) \)

Solution of D.E

⇒ \(y \cos x = \int \frac{2 \sec x}{1 + x} \cdot \cos x \, dx + c\)

⇒ \(y \cos x = \int \frac{2}{1 + x} \, dx + c\)

⇒ \(y \cos x = 2 \log |1 + x| + c\)

⇒ \(y(0) = 0 \implies 0 \cdot \cos 0 = 2 \log |1 + 0| + c\)

⇒ \(0 = 2 \log 1 + c \implies 0 = 0 + c \implies c = 0\)

⇒ \(y \cos x = 2 \log (1 + x)\)

⇒ \(y = \frac{2 \log(1 + x)}{\cos x} = 2 \sec x \log(1 + x)\)

⇒ \(y\left(\frac{\pi}{3}\right) = 2 \sec \left(\frac{\pi}{3}\right) \log\left(1 + \frac{\pi}{3}\right)\)

⇒ \(y\left(\frac{\pi}{3}\right) = 2 \cdot 2 \cdot \log \left(\frac{3 + \pi}{3}\right) = 4 \log \left(\frac{3 + \pi}{3}\right)\)

Hence, the Correct answer is Option 2

Solution of Differential Equations Question 5:

The general solution of the differential equation \(x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)\) is

  1. \(\sin \left(\frac{y}{x}\right)=\frac{C}{x}\)
  2. \(\sin \left(\frac{y}{x}\right)=C x\)
  3. \(\sin \left(\frac{x}{y}\right)=C x\)
  4. \(\sin \left(\frac{x}{y}\right)=C y\)
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\sin \left(\frac{y}{x}\right)=C x\)

Solution of Differential Equations Question 5 Detailed Solution

Calculation

Given equation: \(x\frac{dy}{dx} = y + x \tan(\frac{y}{x})\)

Divide by x: \(\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})\)

Let y = vx, then \(\frac{dy}{dx} = v + x\frac{dv}{dx}\)

Substitute in the equation:

\(v + x\frac{dv}{dx} = v + \tan(v)\)

⇒ \(x\frac{dv}{dx} = \tan(v)\)

⇒ \(\frac{dv}{\tan(v)} = \frac{dx}{x}\)

⇒ \(\cot(v) dv = \frac{dx}{x}\)

Integrate both sides:

\(\int \cot(v) dv = \int \frac{dx}{x}\)

⇒ \(\ln|\sin(v)| = \ln|x| + \ln|C|\)

⇒ \(\ln|\sin(v)| = \ln|Cx|\)

Remove the logarithms:

⇒ \(\sin(v) = Cx\)

Substitute v = y/x:

⇒ \(\sin(\frac{y}{x}) = Cx\)

∴ The general solution is \(\sin(\frac{y}{x}) = Cx\).

Hence option 2 is correct

Top Solution of Differential Equations MCQ Objective Questions

The solution of the differential equation dy = (1 + y2) dx is

  1. y = tan x + c
  2. y = tan (x + c)
  3. tan-1 (y + c) = x
  4. tan-1 (y + c) = 2x

Answer (Detailed Solution Below)

Option 2 : y = tan (x + c)

Solution of Differential Equations Question 6 Detailed Solution

Download Solution PDF

Concept:

\(\rm \displaystyle \int \frac{dx}{1+x^2} = \tan^{-1} x + c\)

Calculation:

Given: dy = (1 + y2) dx

\(\rm \Rightarrow \frac{dy}{1+y^2}=dx\)

Integrating both sides, we get

\(\rm \Rightarrow \displaystyle \int \frac{dy}{1+y^2}=\displaystyle \int dx\\\rm \Rightarrow \tan^{-1} y = x + c \)

⇒ y = tan (x + c)

∴ The solution of the given differential equation is y = tan (x + c).

If x2 + y2 + z2 = xy + yz + zx and x = 1, then find the value of \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)

  1. 2
  2. 0
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Solution of Differential Equations Question 7 Detailed Solution

Download Solution PDF

Given:

x = 1

x2 + y2 + z2 = xy + yz + zx

Calculations:

x2 + y2 + z2 - xy - yz - zx = 0

⇒(1/2)[(x - y)2 + (y - z)2 + (z - x)2] = 0

⇒x = y , y = z and z = x

But x = y = z = 1

so, \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)

= {10(1)4 + 5(1)4 + 7(1)4}/{13(1)2(1)2+ 6(1)2(1)2 + 3(1)2(1)2}

= 22/22

= 1

Hence, the required value is 1.

What is the solution of the differential equation \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0?\)

  1. y = xea + c
  2. x = yea + c
  3. y = In x + c
  4. x = In y + c

Answer (Detailed Solution Below)

Option 1 : y = xea + c

Solution of Differential Equations Question 8 Detailed Solution

Download Solution PDF

Calculation:

Given: \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0\)

\( \Rightarrow \ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) = {\rm{a}}\)

\(\Rightarrow \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {{\rm{e}}^{\rm{a}}}\)

\(\Rightarrow {\rm{\;}}\smallint \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \smallint {{\rm{e}}^{\rm{a}}}\)

On integrating both sides, we get

⇒ y = xea + c

Find general solution of \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)

  1. xy = log x + c
  2. \(\rm \frac{x^2}{2} = \log y + c\)
  3. \(\rm \frac{y^2}{2} = \log x + c\)
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac{y^2}{2} = \log x + c\)

Solution of Differential Equations Question 9 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{1}{x}dx = \log x + c\)

\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)

 

Calculation:

Given: \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)

\(\Rightarrow \rm xy \frac {dy}{dx} =1 \)

\(\Rightarrow \rm y \;dy=\frac {dx}{x} \)

Integrating both sides, we get

\(\rm \Rightarrow \frac{y^2}{2} = \log x + c\)

If x + \(\frac{1}{2x}\) = 3, then evaluate 8x3\(\rm \frac{1}{x^3}\).

  1. 212
  2. 216
  3. 180
  4. 196

Answer (Detailed Solution Below)

Option 3 : 180

Solution of Differential Equations Question 10 Detailed Solution

Download Solution PDF

Given:

x + \(\frac{1}{2x}\) = 3

Concept Used:

Simple calculations is used

Calculations:

⇒ x + \(\frac{1}{2x}\) = 3

On multiplying 2 on both sides, we get

⇒ 2x + \(\frac{1}{x}\) = 6  .................(1)

Now, On cubing both sides,

⇒ \((2x + \frac{1}{x})^3 = 6^3\)

⇒ \(8x^3 + \frac{1}{x^3} + 3(4x^2)(\frac{1}{x})+3(2x)(\frac{1}{x^2})=216\)

⇒ \(8x^3 + \frac{1}{x^3} + 12x+\frac{6}{x}=216\)

⇒ \(8x^3 + \frac{1}{x^3}= 216 - 6(2x+\frac{1}{x})\)

⇒ \(8x^3 + \frac{1}{x^3}= 216- 6(6)\)  ..............from (1)

⇒ \(8x^3 + \frac{1}{x^3}= 216- 36\)

⇒ \(8x^3 + \frac{1}{x^3}= 180\)

⇒ Hence, The value of the above equation is 180

The solution of differential equation  \(\rm dy = \left ( 4 + y^{2} \right )dx\) is 

  1. \(\rm y = 2\tan \left ( x+C \right )\)
  2. \(\rm y = 2\tan \left ( 2x+C \right )\)
  3. \(\rm 2y = \tan \left ( 2x+C \right )\)
  4. \(\rm2 y = 2\tan \left ( x+C \right )\)

Answer (Detailed Solution Below)

Option 2 : \(\rm y = 2\tan \left ( 2x+C \right )\)

Solution of Differential Equations Question 11 Detailed Solution

Download Solution PDF

Concept: 

\(\rm \int \frac{1}{a^{2}+x^{2}}dx = \frac{1}{a}\tan ^{-1}\frac{x}{a}+ C\) 

Calculation: 

Given : \(\rm dy = \left ( 4 + y^{2} \right )dx\) 

⇒ \(\rm \frac{dy}{4+y^{2}}= dx\) 

Integrating both sides, we get 

\(\rm \int \frac{dy}{2^{2}+y^{2}}= \int dx\)

⇒ \(\rm \frac{1}{2}\tan^{-1}\frac{y}{2}= x+c\) 

⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ 2c\)

⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ C\)  [∵ 2c = C]

⇒ \(\rm \frac{y}{2}= \tan(2x+ C)\)

 \(\rm y = 2\tan \left ( 2x+C \right )\) 

The correct option is 2 . 

The solution of \(\rm {dx\over dt}= 3x+8\) will be

  1. \(\rm x ={ 1\over 3}e^{(t+c)}-{3\over 8}\)
  2. \(\rm x ={ 1\over 3}e^{3(t+c)}-{8\over 3}\)
  3. \(\rm x ={ 1\over 3}e^{(t+c)}+{3\over 8}\)
  4. \(\rm x ={ 1\over 3}e^{(t+c)}+{8\over 3} \)

Answer (Detailed Solution Below)

Option 2 : \(\rm x ={ 1\over 3}e^{3(t+c)}-{8\over 3}\)

Solution of Differential Equations Question 12 Detailed Solution

Download Solution PDF

Concept:

Some useful formulas are:

\(\rm \int{dx\over ax}={1\over a}logx+c\)

If log x = z then we can write x = ez

Calculation:

\(\rm {dx\over dt}= 3x+8\)

Rearranging the equation and integrating we get,

\(\rm \int{dx\over 3x+8}=\int dt\)

\(\rm {1\over 3 }log({3x+8})=t+c\), c = constant of integration

⇒ log(3x + 8) = 3(t + c)

⇒ 3x + 8 = e3(t+c) 

⇒ 3x = e3(t+c) - 8

∴ \(\rm x ={ 1\over 3}e^{3(t+c)}-{8\over 3}\)

The solution of the differential equation dy = \(\rm \sqrt{1-y^2}\) dx is

  1. y = sin x + c
  2. y = sin (x + c)
  3. sin-1 (y + x) = c
  4. sin-1 (y + c) = x

Answer (Detailed Solution Below)

Option 2 : y = sin (x + c)

Solution of Differential Equations Question 13 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{dx}{\sqrt{a^{2}-x^{2}}}= sin^{-1}\frac{x}{a}\) 

Calculation:

Given: dy = \(\rm \sqrt{1-y^2}\) dx 

⇒ \(\rm \frac{dy}{\sqrt{1^{2}-y^{2}}} = dx\) 

Integrating both sides, we get

⇒ \(\rm \int \frac{dy}{\sqrt{1^{2}-y^{2}}} =\int dx\) 

⇒ \(\rm sin^{-1}\left ( y \right )\) = x + c 

⇒ y = sin ( x + c ) . 

The correct option is 2.

The solution of the differential equation \(\rm y \frac {dy}{dx} \) = x + 1 is

  1. y2 - x2 + 2x - c = 0
  2. y2 + x2 - 2x - c = 0
  3. y2 - x2 - 2x - c = 0
  4. None of these

Answer (Detailed Solution Below)

Option 3 : y2 - x2 - 2x - c = 0

Solution of Differential Equations Question 14 Detailed Solution

Download Solution PDF

Calculation:

Given: ​\(\rm y \frac {dy}{dx} = x + 1\)

⇒ ydy = (x + 1) dx

Integrating both sides, we get

⇒ ∫ ydy = ∫ (x + 1) dx

⇒ \(\rm \frac {y^2}{2} = \rm \frac {x^2}{2} + x + c \)

⇒ y2 = x2 + 2x + 2c

∴ y2 - x2 - 2x - c = 0

Please note: c is constant here, so 2c can be also considered as a constant. 

Find general solution of \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)

  1. \(\rm \tan^{-1}y = x+\frac{x^3}{3} + c\)
  2. \(\rm y+\frac{y^3}{3} = \tan^{-1}x + c\)
  3. \(\rm \tan^{-1}y =\tan^{-1}x+ c\)
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : \(\rm y+\frac{y^3}{3} = \tan^{-1}x + c\)

Solution of Differential Equations Question 15 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a} + c\)

\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)

 

Calculation:

Given: \(\rm \frac{dx}{dy} = (1+x^2)(1+y^2)\)

\(\rm \Rightarrow \frac{dx}{(1+x^2)} = (1+y^2)dy\)

\(\rm \Rightarrow (1+y^2)dy=\frac{dx}{(1+x^2)} \)

Integrating both sides, we get

\(\rm \Rightarrow \int (1+y^2)dy=\int \frac{dx}{(1+x^2)} \)

\(\rm \Rightarrow y+\frac{y^3}{3} = \tan^{-1}x + c\)

Get Free Access Now
Hot Links: teen patti stars teen patti cash teen patti star teen patti joy official