Differential Equations MCQ Quiz - Objective Question with Answer for Differential Equations - Download Free PDF

Last updated on Jul 8, 2025

Latest Differential Equations MCQ Objective Questions

Differential Equations Question 1:

If a power series \(\rm y=\Sigma_{j=0}^\infty a_jx^j\) analysis is carried out of the following differential equation \(\rm \frac{d^2y}{dx^2}+\frac{1}{x^2}\frac{dy}{dx}-\frac{4}{x^2}y = 0\) which of the following recurrence relations results?

  1. \(\rm a_{j+1}=a_j\frac{4-j(j+1)}{j+1}\) j = 0, 1, 2....
  2. \(\rm a_{j+2}=a_j\frac{4-j(j-1)}{j+1}\)  j = 0, 1, 2....
  3. \(\rm a_{j+2}=a_j\frac{4-j(j+1)}{j+1}\)  j = 0, 1, 2....
  4. \(\rm a_{j+1}=a_j\frac{4-j(j-1)}{j+1}\)  j = 0, 1, 2....

Answer (Detailed Solution Below)

Option 4 : \(\rm a_{j+1}=a_j\frac{4-j(j-1)}{j+1}\)  j = 0, 1, 2....

Differential Equations Question 1 Detailed Solution

Ans : (4)

Solution :

Let y = \(\rm \sum_{j=0}^{\infty} a_{j} X^{j}, \frac{d y}{d x}=\sum_{j=0}^{\infty} j a_{j} X^{j-1} \text { and } \frac{d^{2} y}{d x^{2}}=\sum_{j=0}^{\infty} j(j-1) a_{j} X^{j-2}\)

∵ \(\rm \frac{d^{2} y}{d x^{2}}+\frac{1}{x^{2}} \frac{d y}{d x}-\frac{4}{x^{2}} y=0 \Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-4 y=0\)

⇒ \(\rm \sum_{j=0}^{\infty} j(j-1) a_{j} x^{j}+\sum_{j=0}^{\infty} j a_{j} x^{j-1}-4 \sum_{j=0}^{\infty} a_{j} x^{j}=0\)

Equating coefficient of xj to zero; j(j - 1)aj + (j + 1)aj+1 - 4aj = 0

⇒ (j + 1)aj+1 = 4aj j(j - 1)aj ⇒ aj+1 = \(\rm \frac{4-j(j-1)}{j+1} a_{j}\)

Differential Equations Question 2:

Let y = y(t) be a solution of the differential equation \(\frac{\mathrm{dy}}{\mathrm{dt}}+\alpha \mathrm{y}=\gamma \mathrm{e}^{-\beta \mathrm{t}}\) Where , α > 0, β > 0 and γ > 0. Then \( \rm \displaystyle {Lim}_{t \rightarrow \infty} y(t)\)

  1. is 0
  2. does not exist
  3. is 1
  4. is –1

Answer (Detailed Solution Below)

Option 1 : is 0

Differential Equations Question 2 Detailed Solution

Calculation: 

\(\frac{\mathrm{dy}}{\mathrm{dt}}+\alpha \mathrm{y}=\gamma \mathrm{e}^{-\beta \mathrm{t}} \)

\(\text { I.F. }=\mathrm{e}^{\int \alpha \mathrm{dt}}=\mathrm{e}^{\alpha \mathrm{t}} \)

\(\text { Solution } \Rightarrow \mathrm{y} \cdot \mathrm{e}^{\alpha \mathrm{t}}=\int \gamma \mathrm{e}^{-\beta \mathrm{T}} \cdot \mathrm{e}^{\alpha \mathrm{t}} \mathrm{dt} \)

\(\Rightarrow \mathrm{ye}^{\alpha \mathrm{t}}=\gamma \frac{\mathrm{e}^{(\alpha-\beta) \mathrm{t}}}{(\alpha-\beta)}+\mathrm{c} \)

\(\Rightarrow \mathrm{y}=\frac{\gamma}{\mathrm{e}^{\beta \mathrm{t}}(\alpha-\beta)}+\frac{\mathrm{c}}{\mathrm{e}^{\alpha \mathrm{t}}}\)

So, \(\rm \displaystyle \lim _{t \rightarrow \infty} y(t)=\frac{\gamma}{\infty}+\frac{c}{\infty}=0\)

Hence, the correct answer is Option 1. 

Differential Equations Question 3:

If \(\frac{d y}{d x}\) + 2y sec 2x = 2 sec 2x + 3 tan x sec 2x and f(0) = \(\frac{5}{4}\).  Then the value of 12\(\left(y\left(\frac{\pi}{4}\right)-\frac{1}{e^{2}}\right)\) equal to

Answer (Detailed Solution Below) 21

Differential Equations Question 3 Detailed Solution

Explanation:

\(\frac{d y}{d x}\) + 2y sec2x = 2sec2x + 3 tan x sec2

I.F. = \(e^{\int 2 \sec ^{2} x d x}\)

I.F. = e2tanx

\(y \cdot e^{2 \tan x}=\int e^{2 \tan x}(2+3 \tan x) \sec ^{2} x d x\)

Put tan x = u

sec2xdx = du 

\(y \cdot e^{2 u}=\int e^{2 u}(2+3 u) d u\)

\(y \cdot e^{2 u} \Rightarrow \frac{2 e^{2 u}}{2}+3 \int e^{2 u} \cdot u d u\)

\(y \cdot e^{2 u}=e^{2 u}+3\left[\frac{u e^{2 u}}{2}-\int \frac{e^{2 u}}{2}\right]\)

\(y e^{2 u}=e^{2 u}+3\left[\frac{u e^{2 u}}{2}-\frac{e^{2 u}}{4}\right]+C\)

\(y e^{2 \tan x}=e^{2 \tan x}+3\left[\frac{\tan x e^{2 \tan x}}{2}-\frac{e^{2 \tan x}}{4}\right]+C\)

F(0) = \(\frac{5}{4}\)

\(\frac{5}{4}=1-\frac{3}{4}+C\)

\(\frac{5}{4}-\frac{1}{4}=C\)

1 = C

\(y=1+3\left(\frac{\tan x}{2}-\frac{1}{4}\right)+1 \cdot e^{-2 \tan x}\)

\(y\left(\frac{\pi}{4}\right)=1+3\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{e^{2}}\)

\(y\left(\frac{\pi}{4}\right)=\frac{7}{4}+\frac{1}{e^{2}}\)

\(12\left(y\left(\frac{x}{4}\right)-\frac{1}{e^{2}}\right)=12\left(\frac{7}{4}+\frac{1}{e^{2}}-\frac{1}{e^{2}}\right)\) = 21

Differential Equations Question 4:

Let y = y(x) be the solution curve of the differential equation \(\rm \frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}\left(1+\log _{e} x\right)\right)\), x > 0, y(1) = 3. Then \(\frac{\mathrm{y}^{2}(\mathrm{x})}{9}\) is equal to :  

  1. \(\rm \frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
  2. \(\rm \frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
  3. \(\rm \frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
  4. \(\rm \frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)

Differential Equations Question 4 Detailed Solution

Calculation: 

\(\rm \frac{d y}{d x}-\frac{y}{x}=y^{3}\left(1+\log _{e} x\right)\)

⇒ \(\rm \frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{x y^{2}}=1+\log _{e} x\)

Let \(-\frac{1}{\mathrm{y}^{2}}=\mathrm{t} \Rightarrow \frac{2}{\mathrm{y}^{3}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}\)

∴ \(\rm \frac{d t}{d x}+\frac{2 t}{x}=2\left(1+\log _{e} x\right)\)

\(\text { I.F. }=\mathrm{e}^{\int \frac{2}{\mathrm{x}} \mathrm{dx}}=\mathrm{x}^{2}\)

⇒ \(\rm \frac{-x^{2}}{y^{2}}=\frac{2}{3}\left(\left(1+\log _{e} x\right) x^{3}-\frac{x^{3}}{3}\right)+C \)

y(1) = 3

\(\rm \frac{y^{2}}{9}=\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)

Hence, the correct answer is Option 1. 

Differential Equations Question 5:

Suppose that the differential equation

\(\rm \frac{d^2y}{dx^2}+P(x)\frac{dy}{dx}+e^{2x}y=0\), x ∈ ℝ 

transforms into a second order differential equation with constant coefficients under the change of independent variable given by s = s(x) satisfying \(\rm \frac{dy}{dx}(0)\) = 1. Then which of the following statements is true?

  1. e-x (P(x)+1) is a constant function on ℝ
  2. e-2x P(x) is a constant function on
  3. \(\rm s(x)=\frac{e^{2x}}{2}, x\in ℝ\)
  4. P(x) → 1 as x → ∞ 

Answer (Detailed Solution Below)

Option 1 : e-x (P(x)+1) is a constant function on ℝ

Differential Equations Question 5 Detailed Solution

Concept:

Transformation of Variable in Second Order Differential Equations:

  • A second-order linear differential equation with variable coefficients can sometimes be transformed into one with constant coefficients by a suitable change of variables.
  • Given equation: d²y/dx² + P(x) dy/dx + e2x y = 0
  • Let the new variable be s = s(x) such that the new equation in s has constant coefficients.
  • Using chain rule for derivatives:
    • dy/dx = dy/ds × ds/dx
    • d²y/dx² = d²y/ds² × (ds/dx)² + dy/ds × d²s/dx²
  • Substituting into the equation yields transformed coefficients in terms of ds/dx and d²s/dx².
  • To achieve constant coefficients, expressions involving P(x) and e2x must cancel appropriately.

 

Calculation:

Given,

d²y/dx² + P(x) dy/dx + e2x y = 0

Let s = s(x), such that ds/dx = ex

⇒ dy/dx = dy/ds × ex

⇒ d²y/dx² = d²y/ds² × e2x + dy/ds × ex

Substitute in original equation:

⇒ e2x d²y/ds² + ex dy/ds + P(x) ex dy/ds + e2x y = 0

⇒ e2x d²y/ds² + ex (1 + P(x)) dy/ds + e2x y = 0

To make coefficients constant:

⇒ ex(P(x) + 1) must be constant

⇒ e−x(P(x) + 1) = constant

∴ e−x(P(x) + 1) is a constant function on ℝ.

Top Differential Equations MCQ Objective Questions

What is the degree of the differential equation \({\rm{y}} = {\rm{x}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^2} + {\left( {\frac{{{\rm{dx}}}}{{{\rm{dy}}}}} \right)} \)?

  1. 1
  2. 2
  3. 3
  4. 4

Answer (Detailed Solution Below)

Option 3 : 3

Differential Equations Question 6 Detailed Solution

Download Solution PDF

Concept:

Order: The order of a differential equation is the order of the highest derivative appearing in it.

Degree: The degree of a differential equation is the power of the highest derivative occurring in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

 

Calculation:

Given:

\({\rm{y}} = {\rm{x}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^2} + {\left( {\frac{{{\rm{dx}}}}{{{\rm{dy}}}}} \right)} \)

\({\rm{y}} = {\rm{x}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^2} + \frac{1}{{{{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)}}}} \)

\(\Rightarrow {\rm{y}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)} = {\rm{x}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^3} + 1\)

For the given differential equation the highest order derivative is 1.

Now, the power of the highest order derivative is 3.

We know that the degree of a differential equation is the power of the highest derivative

Hence, the degree of the differential equation is 3.

Mistake PointsNote that, there is a term (dx/dy) which needs to convert into the dy/dx form before calculating the degree or order. 

The order and degree of the differential equation \(\rm \frac{d^3y}{dx^3} + \cos\left(\frac{d^2y}{dx^2}\right) = 0\) are respectively

  1. order = 3, degree = 1
  2. order = 3, degree = 2
  3. order = 3, degree = not define
  4. order = not define, degree = 3

Answer (Detailed Solution Below)

Option 3 : order = 3, degree = not define

Differential Equations Question 7 Detailed Solution

Download Solution PDF

Concept:

Order: The order of a differential equation is the order of the highest derivative appearing in it.

Degree: The degree of a differential equation is the power of the highest derivative occurring in it, after the Equation has been expressed in a form free from radicals as far as the derivatives are concerned.


Calculation:

The differential equation is given as: \(\rm \frac{d^3y}{dx^3} + \cos\left(\frac{d^2y}{dx^2}\right) = 0\)

The highest order derivative presents in the differential equation is \(\rm \frac{d^3y}{dx^3}\)

Hence, its order is three.

Here the given differential equation is not a polynomial equation, Hence its degree is not defined.

The solution of the differential equation dy = (1 + y2) dx is

  1. y = tan x + c
  2. y = tan (x + c)
  3. tan-1 (y + c) = x
  4. tan-1 (y + c) = 2x

Answer (Detailed Solution Below)

Option 2 : y = tan (x + c)

Differential Equations Question 8 Detailed Solution

Download Solution PDF

Concept:

\(\rm \displaystyle \int \frac{dx}{1+x^2} = \tan^{-1} x + c\)

Calculation:

Given: dy = (1 + y2) dx

\(\rm \Rightarrow \frac{dy}{1+y^2}=dx\)

Integrating both sides, we get

\(\rm \Rightarrow \displaystyle \int \frac{dy}{1+y^2}=\displaystyle \int dx\\\rm \Rightarrow \tan^{-1} y = x + c \)

⇒ y = tan (x + c)

∴ The solution of the given differential equation is y = tan (x + c).

If x2 + y2 + z2 = xy + yz + zx and x = 1, then find the value of \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)

  1. 2
  2. 0
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Differential Equations Question 9 Detailed Solution

Download Solution PDF

Given:

x = 1

x2 + y2 + z2 = xy + yz + zx

Calculations:

x2 + y2 + z2 - xy - yz - zx = 0

⇒(1/2)[(x - y)2 + (y - z)2 + (z - x)2] = 0

⇒x = y , y = z and z = x

But x = y = z = 1

so, \(\rm \frac{10x^4+5y^4+7z^4}{13x^2y^2+6y^2z^2+3z^2x^2}\)

= {10(1)4 + 5(1)4 + 7(1)4}/{13(1)2(1)2+ 6(1)2(1)2 + 3(1)2(1)2}

= 22/22

= 1

Hence, the required value is 1.

What is the solution of the differential equation \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0?\)

  1. y = xea + c
  2. x = yea + c
  3. y = In x + c
  4. x = In y + c

Answer (Detailed Solution Below)

Option 1 : y = xea + c

Differential Equations Question 10 Detailed Solution

Download Solution PDF

Calculation:

Given: \(\ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) - {\rm{a}} = 0\)

\( \Rightarrow \ln \left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right) = {\rm{a}}\)

\(\Rightarrow \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = {{\rm{e}}^{\rm{a}}}\)

\(\Rightarrow {\rm{\;}}\smallint \frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \smallint {{\rm{e}}^{\rm{a}}}\)

On integrating both sides, we get

⇒ y = xea + c

What is the degree of the differential equation \(\rm y = x \dfrac{dy}{dx}+\left(\dfrac{dy}{dx}\right)^{-2} \ ?\)

  1. 1
  2. 3
  3. -2
  4. Degree does not exist.

Answer (Detailed Solution Below)

Option 2 : 3

Differential Equations Question 11 Detailed Solution

Download Solution PDF

Concept:

Order: The order of a differential equation is the order of the highest derivative appearing in it.

Degree: The degree of a differential equation is the power of the highest derivative occurring in it, after the Equation has been expressed in a form free from radicals as far as the derivatives are concerned.

Calculation:

Given:

\(\rm y = x \frac{dy}{dx}+\left(\frac{dy}{dx}\right)^{-2} \\ \rm y = x\frac{dy}{dx}+\frac{1}{(\frac{dy}{dx})^2} \\ y(\frac{dy}{dx} )^2= x(\frac{dy}{dx})^3 + 1\)

For the given differential equation the highest order derivative is 1.

Now, the power of the highest order derivative is 3.

We know that the degree of a differential equation is the power of the highest derivative.

Hence, the degree of the differential equation is 3.

Find general solution of \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)

  1. xy = log x + c
  2. \(\rm \frac{x^2}{2} = \log y + c\)
  3. \(\rm \frac{y^2}{2} = \log x + c\)
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac{y^2}{2} = \log x + c\)

Differential Equations Question 12 Detailed Solution

Download Solution PDF

Concept:

\(\rm \int \frac{1}{x}dx = \log x + c\)

\(\rm \int x^ndx = \frac{x^{n+1}}{n+1} + c\)

 

Calculation:

Given: \(\rm\left( xy \frac {dy}{dx} -1 \right)= 0\)

\(\Rightarrow \rm xy \frac {dy}{dx} =1 \)

\(\Rightarrow \rm y \;dy=\frac {dx}{x} \)

Integrating both sides, we get

\(\rm \Rightarrow \frac{y^2}{2} = \log x + c\)

If x + \(\frac{1}{2x}\) = 3, then evaluate 8x3\(\rm \frac{1}{x^3}\).

  1. 212
  2. 216
  3. 180
  4. 196

Answer (Detailed Solution Below)

Option 3 : 180

Differential Equations Question 13 Detailed Solution

Download Solution PDF

Given:

x + \(\frac{1}{2x}\) = 3

Concept Used:

Simple calculations is used

Calculations:

⇒ x + \(\frac{1}{2x}\) = 3

On multiplying 2 on both sides, we get

⇒ 2x + \(\frac{1}{x}\) = 6  .................(1)

Now, On cubing both sides,

⇒ \((2x + \frac{1}{x})^3 = 6^3\)

⇒ \(8x^3 + \frac{1}{x^3} + 3(4x^2)(\frac{1}{x})+3(2x)(\frac{1}{x^2})=216\)

⇒ \(8x^3 + \frac{1}{x^3} + 12x+\frac{6}{x}=216\)

⇒ \(8x^3 + \frac{1}{x^3}= 216 - 6(2x+\frac{1}{x})\)

⇒ \(8x^3 + \frac{1}{x^3}= 216- 6(6)\)  ..............from (1)

⇒ \(8x^3 + \frac{1}{x^3}= 216- 36\)

⇒ \(8x^3 + \frac{1}{x^3}= 180\)

⇒ Hence, The value of the above equation is 180

The degree of the differential equation

\(\dfrac{d^2y}{dx^2}+3\left(\dfrac{dy}{dx}\right)^2 =x^2 \log \left(\dfrac{d^2y}{dx^2}\right)\)

  1. 1
  2. 2
  3. 3
  4. Not defined

Answer (Detailed Solution Below)

Option 4 : Not defined

Differential Equations Question 14 Detailed Solution

Download Solution PDF

Concept:

Order: The order of a differential equation is the order of the highest derivative appearing in it.

Degree: The degree of a differential equation is the power of the highest derivative occurring in it, after the Equation has been expressed in a form free from radicals as far as the derivatives are concerned.

Calculation:

\(\dfrac{d^2y}{dx^2}+3\left(\dfrac{dy}{dx}\right)^2 =x^2 \log \left(\dfrac{d^2y}{dx^2}\right)\)

For the given differential equation the highest order derivative is 2.

The given differential equation is not a polynomial equation because it involved a logarithmic term in its derivatives hence its degree is not defined.

The solution of differential equation  \(\rm dy = \left ( 4 + y^{2} \right )dx\) is 

  1. \(\rm y = 2\tan \left ( x+C \right )\)
  2. \(\rm y = 2\tan \left ( 2x+C \right )\)
  3. \(\rm 2y = \tan \left ( 2x+C \right )\)
  4. \(\rm2 y = 2\tan \left ( x+C \right )\)

Answer (Detailed Solution Below)

Option 2 : \(\rm y = 2\tan \left ( 2x+C \right )\)

Differential Equations Question 15 Detailed Solution

Download Solution PDF

Concept: 

\(\rm \int \frac{1}{a^{2}+x^{2}}dx = \frac{1}{a}\tan ^{-1}\frac{x}{a}+ C\) 

Calculation: 

Given : \(\rm dy = \left ( 4 + y^{2} \right )dx\) 

⇒ \(\rm \frac{dy}{4+y^{2}}= dx\) 

Integrating both sides, we get 

\(\rm \int \frac{dy}{2^{2}+y^{2}}= \int dx\)

⇒ \(\rm \frac{1}{2}\tan^{-1}\frac{y}{2}= x+c\) 

⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ 2c\)

⇒ \(\rm \tan^{-1}\frac{y}{2}= 2x+ C\)  [∵ 2c = C]

⇒ \(\rm \frac{y}{2}= \tan(2x+ C)\)

 \(\rm y = 2\tan \left ( 2x+C \right )\) 

The correct option is 2 . 

Get Free Access Now
Hot Links: teen patti real teen patti vip teen patti club