Matrices MCQ Quiz - Objective Question with Answer for Matrices - Download Free PDF

Last updated on Jun 14, 2025

Latest Matrices MCQ Objective Questions

Matrices Question 1:

If \(A=\begin{bmatrix}x&y&z\\y&z&x\\z&x&y\end{bmatrix}\)

where x,y,z are integers, is an orthogonal matrix, then what is A2 equal to?

  1. Null matrix 
  2. Identity matrix
  3. A
  4. -A

Answer (Detailed Solution Below)

Option 2 : Identity matrix

Matrices Question 1 Detailed Solution

Calculation:

Given,

Matrix A is defined as:

\(A = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix}\)

It is mentioned that A is an orthogonal matrix. Therefore,

\(A^T A = I\)

Now, we calculate A2:

\(A^2 = A \cdot A\)

\(A^2 = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix} \cdot \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix}\)

Since A is orthogonal, \(A^T A = I\), and hence:

\(A^2 = I\)

∴ A2 = Identity matrix (I).

Hence, the Correct answer is Option 2.

Matrices Question 2:

If \(A=\begin{bmatrix}1&2&2 \\ 2&1&2\\2&2&1\end{bmatrix}\) then what is equal to?

  1. 5I3
  2. I3
  3. I3
  4. 5I3

Answer (Detailed Solution Below)

Option 4 : 5I3

Matrices Question 2 Detailed Solution

Calculation:

Given,

\(A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)

\(\Rightarrow A^2 = A \times A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)

 

\(\Rightarrow A^2 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}\)

Now 4A

\(\Rightarrow 4A = 4 \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)

\(\Rightarrow 4A = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}\)

Also A2 - 4A

\(\Rightarrow A^2 - 4A = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}\)

\(\Rightarrow A^2 - 4A = \begin{bmatrix} 9-4 & 8-8 & 8-8 \\ 8-8 & 9-4 & 8-8 \\ 8-8 & 8-8 & 9-4 \end{bmatrix}\)

\(\Rightarrow A^2 - 4A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}\)

Relate the result to the identity matrix I3" id="MathJax-Element-594-Frame" role="presentation" style="position: relative;" tabindex="0">I3" id="MathJax-Element-39-Frame" role="presentation" style="position: relative;" tabindex="0">I3

\(\Rightarrow A^2 - 4A = 5I_3\)

Hence, the correct answer is option 4.

Matrices Question 3:

If \(f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\) then what is (f(π))2 equal to?

  1. \(\begin{bmatrix} -1&0\\ 0&-1\end{bmatrix}\)
  2. \(\begin{bmatrix} 1&1\\ 1&1\end{bmatrix}\)
  3. \(\begin{bmatrix} -1&0\\ 0&1\end{bmatrix}\)
  4. \(\begin{bmatrix} 1&0\\ 0&1\end{bmatrix}\)

Answer (Detailed Solution Below)

Option 4 : \(\begin{bmatrix} 1&0\\ 0&1\end{bmatrix}\)

Matrices Question 3 Detailed Solution

Concept:

Rotation Matrix:

  • A rotation matrix is used to perform a rotation in a Euclidean space. It is a square matrix that describes the rotation of a vector space.
  • For a 2D rotation, the matrix is given by: \(f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\)
  • Here, θ is the angle of rotation in radians.
    • cos θ: Represents the cosine of the rotation angle.
    • sin θ: Represents the sine of the rotation angle.
  • Key property of a rotation matrix:
    • The transpose of the matrix is equal to its inverse.
    • The determinant of the matrix is always equal to 1.
  • When θ = π, the rotation matrix becomes: \(f(\pi) = \begin{bmatrix} \cos \pi & \sin \pi \\ -\sin \pi & \cos \pi \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

 

Calculation:

Given,

Rotation matrix at θ = π:

\(f(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

To find (f(π))2, multiply the matrix by itself:

\(f(\pi) × f(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} × \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

Using matrix multiplication:

Top-left element: (-1)(-1) + (0)(0) = 1

Top-right element: (-1)(0) + (0)(-1) = 0

Bottom-left element: (0)(-1) + (-1)(0) = 0

Bottom-right element: (0)(0) + (-1)(-1) = 1

Resulting matrix:

\(f(\pi)^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)

∴ (f(π))2 is equal to the identity matrix, which is \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\).

Hence, the correct answer is Option 4.

Matrices Question 4:

If

 \(A = \begin{bmatrix} y & z & x \\ z & x & y \\ x & y & z \end{bmatrix} \)

where x,y,z are integers, is an orthogonal matrix, then what is the value of ?

  1. 0
  2. 1
  3. 4
  4. 14

Answer (Detailed Solution Below)

Option 2 : 1

Matrices Question 4 Detailed Solution

Calculation:

Given,

The matrix A is:

\( A = \begin{bmatrix} y & x & x \\ z & x & y \\ x & y & z \end{bmatrix} \)

Since A  is an orthogonal matrix, we know that:

\( A^T = A^{-1} \quad \Rightarrow \quad A^T A = I \)

This property tells us that A  is orthogonal, and it implies that \(A^T A \) (the product of A's transpose and A is equal to the identity matrix I , which is:

\( A^T A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

Now, let’s calculate \(A^T A \) step by step. The transpose of matrix A , denoted \(A^T \) is:

\( A^T = \begin{bmatrix} y & z & x \\ x & x & y \\ x & y & z \end{bmatrix} \)

Now, we perform matrix multiplication between \(A^T\) and A:

\( A^T A = \begin{bmatrix} y & z & x \\ x & x & y \\ x & y & z \end{bmatrix} \begin{bmatrix} y & x & x \\ z & x & y \\ x & y & z \end{bmatrix} \)

Performing this multiplication, we get the following matrix:

\( A^T A = \begin{bmatrix} y^2 + z^2 + x^2 & xy + zx + xy & xz + yz + x^2 \\ xy + zx + xy & x^2 + x^2 + y^2 & xy + xz + yz \\ xz + yz + x^2 & xy + xz + yz & x^2 + y^2 + z^2 \end{bmatrix} \)

This matrix must be equal to the identity matrix I , which is:

\( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

By comparing the elements of the matrices, we get the following system of equations:

1. \( y^2 + z^2 + x^2 = 1 \) 2. \(xy + zx + xy = 0 \) 3. \(xz + yz + x^2 = 1 \)

Thus, the key result from the orthogonality condition is:

\( x^2 + y^2 + z^2 = 1 \)

Hence, the correct answer is Option 2. 

Matrices Question 5:

If

 \(\begin{bmatrix} x & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = \begin{bmatrix} 45 \end{bmatrix}\)

then which one of the following is a value of x?

  1. -2
  2. -1
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Matrices Question 5 Detailed Solution

Calculation:

Multiply Matrix 1 and Matrix 2:

 

\(\begin{bmatrix} x & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} x+4+7 & 2x+5+8 & 3x+6+9 \end{bmatrix}\)

\(\begin{bmatrix} x+11 & 2x+13 & 3x+15 \end{bmatrix}\)

Multiply the resulting matrix with Matrix 3:

\(\begin{bmatrix} x+11 & 2x+13 & 3x+15 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} \)

\(= (x+11) \cdot 1 + (2x+13) \cdot 1 + (3x+15) \cdot x\)

\((x+11) + (2x+13) + (3x^2+15x)\)

\((3x^2 + 18x + 24)\)

Equate the result to 45:

\((3x^2 + 18x + 24 = 45)\)

\((3x^2 + 18x - 21 = 0)\)

\((x^2 + 6x - 7 = 0)\)

 

\((x^2 + 7x - x - 7 = 0)\)

 

\((x = 1 \text{ or } x = -7)\)

Step 5: Verify:

For \(x = 1\), substitute back:

\((3(1)^2 + 18(1) + 24 = 45)\)

45 =45

∴ The correct value of x is 1.

Hence, the correct answer is Option 4.

Top Matrices MCQ Objective Questions

If A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\) is a symmetric matrix then x

  1. 3
  2. 6
  3. 8
  4. 0

Answer (Detailed Solution Below)

Option 2 : 6

Matrices Question 6 Detailed Solution

Download Solution PDF

Concept:

Symmetric Matrix:

  • Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A itself
  • AT = A or A’ = A

Where, AT or A’ denotes the transpose of matrix

  • A square matrix A is said to be symmetric if aij = aji for all i and j

Where aij and aji is an element present in matrix.

 

Calculation:

Given:

A is a symmetric matrix,

⇒ AT = A or aij = aji

A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\)

So, by property of symmetric matrices

⇒ a12 = a21

⇒ x – 3 = 3

∴ x = 6

lf the order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3, then the order of (ATB)T C T is

  1. 5 × 3
  2. 4 × 5
  3. 5 × 7
  4. 4 × 3

Answer (Detailed Solution Below)

Option 3 : 5 × 7

Matrices Question 7 Detailed Solution

Download Solution PDF

Concept:

  • To multiply an m × n matrix by an n × p matrix, the n must be the same, and the result is an m × p matrix.
  • If A be a matrix of order m × n than the order of transpose matrix is n × m

Calculation:

Given:

Order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3

The transpose of the matrix obtained by interchanging the rows and columns of the original matrix.

So, order of AT is 3 × 4 and order of CT is 3 × 7

Now,

ATB = {3 × 4} {4 × 5} = 3 × 5

⇒ Order of ATB is 3 × 5

Hence order of (ATB) T is 5 × 3

Now order of (ATB) T C T = {5 × 3} {3 × 7} = 5 × 7

∴ Order of (ATB) T C T is 5 × 7

If \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\) is symmetric, then what is x equal to?

  1. 2
  2. 3
  3. -1
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Matrices Question 8 Detailed Solution

Download Solution PDF

Concept:

Symmetric Matrix: If the transpose of a matrix is equal to itself, that matrix is said to be symmetric.

Or, A matrix A is symmetric if and only if swapping indices doesn't change its components

  • A = AT
  • aij = aji

 

CALCULATION:

Given - \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\)

A real square matrix A = (aij) is said to be symmetric, if A = AT

Where AT = transpose of matrix A

\({{\rm{A}}^{\rm{T}}} = \left( {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right)\)

∴ A = AT

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right]\)

Compare A21 element.

⇒ x + 2 =2x - 3 

⇒ x = 5

If \(\rm A^{-1}=\begin{bmatrix} 1& 2& 3\\ 2& 4& 3\\ 3& 1& 6\end{bmatrix}=\frac{adj(A)}{k}\), then k = ?

  1. - 25
  2. - 15
  3. \(\rm - \frac1{15}\)
  4. None of these.

Answer (Detailed Solution Below)

Option 3 : \(\rm - \frac1{15}\)

Matrices Question 9 Detailed Solution

Download Solution PDF

Concept:

For an invertible matrix A:

  • A-1\(\rm \frac{adj(A)}{|A|}\).
  • |A-1| = |A|-1\(\rm \frac{1}{|A|}\).

 

Calculation:

\(\rm A^{-1}=\begin{bmatrix} 1& 2& 3\\ 2& 4& 3\\ 3& 1& 6\end{bmatrix}=\frac{adj(A)}{k}\)         -----(1)

From the definition of the inverse of a matrix, 

A-1 = \(\rm \frac{adj(A)}{|A|}\)              -----(2)

Comparing equation (1) & (2), we get

k = |A|  

Using the properties of the determinant of inverse of a matrix, we have:

k = |A| = \(\rm \frac{1}{|A^{-1}|}\)        ----(3)

We know, 

A.A-1 = I

⇒ |A.A-1| = |I| = 1

⇒ |A| |A-1| = 1

⇒ |A| = 1/ |A-1|       ....(4)

Now,

|A-1| = 1(24 - 3) + 2(9 - 12) + 3(2 - 12) = 21 - 6 - 30 = - 15.

|A-1| = -15

Therefore, from equation (3)

k = \(\rm - \frac1{15}\).

Mistake PointsNote that, we have A-1 matrix, not an A matrix. So to find the value of k, don't you have to use relation |A| = 1/|A-1|

If \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\), then find the value of x?

  1. \(\rm 28\over 3\)
  2. \(\rm 32\over 3\)
  3. \(\rm 34\over 3\)
  4. 10

Answer (Detailed Solution Below)

Option 2 : \(\rm 32\over 3\)

Matrices Question 10 Detailed Solution

Download Solution PDF

Concept:

A × A-1 = I, where I is an identity matrix

|A| = \(\rm 1\over {|A^{-1}|}\)

Calculation:

Given: \(\rm A=\begin{bmatrix} x & 2 \\\ 4 & 3 \end{bmatrix}\) and \(\rm A ^{-1}=\begin{bmatrix} {1\over8} & {-1\over 12} \\\ {-1\over 6}& {4\over 9} \end{bmatrix}\)

|A-1| = \(\rm {4\over 72} - {1\over 72} = {3\over 72} = {1\over 24}\)

|A| = \(\rm {1 \over {|A^{-1}|}}\) = 24

⇒ 3x - 8 = 24

∴ x = \(\rm 32\over 3\)

If \(A=\begin{bmatrix} -1 & 4 \\\ 5 & 8 \end{bmatrix}\), then trace of matrix A is

  1. 6
  2. 7
  3. 8
  4. 9

Answer (Detailed Solution Below)

Option 2 : 7

Matrices Question 11 Detailed Solution

Download Solution PDF

Concept:

Trace of a matrix:

Trace of a matrix is the sum of elements on the main diagonal.

The trace is only defined for a square matrix (n × n).

Let A be n × n matrix. 

\(\rm tr\left( A \right) = \mathop \sum \limits_{n = 1}^n {A_{nn}}\)

Calculation:

Given: \(A=\begin{bmatrix} -1 & 4 \\\ 5 & 8 \end{bmatrix}\)

Trace of matrix = sum of elements on the main diagonal

= -1 + 8

= 7

Consider the following question and decide which of the statements is sufficient to answer the question.

Find the value of n, if

Statements∶

1. AB = A

2. \(A\; = \;\left[ {\begin{array}{*{20}{c}} n&9\\ 2&1 \end{array}} \right] , B\; = \;\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

  1. Only 1 is sufficient
  2. Only 2 is sufficient
  3. Either 1 or 2 is sufficient
  4. Both 1 and 2 are not sufficient

Answer (Detailed Solution Below)

Option 4 : Both 1 and 2 are not sufficient

Matrices Question 12 Detailed Solution

Download Solution PDF

Concept:

Multiplication of matrices:

  • The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix.
  • The result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.
  • To multiply an m × n matrix by an n × p matrix, the n must be the same, and the result is an m × p matrix.

Calculation:

From statement 1

AB = A

We cannot find anything from this statement.

From statement 2

\(A\; = \;\left[ {\begin{array}{*{20}{c}} n&9\\ 2&1 \end{array}} \right] , B\; = \;\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

We cannot find anything from this statement.

Combining statement 1 and 2

\(AB\; = \;\left[ {\begin{array}{*{20}{c}} (n\times 1+9\times0)&(n\times0+9\times1)\\ (2\times1+1\times0)&(2\times0+1\times1) \end{array}} \right]\)

\(AB = \left[ {\begin{array}{*{20}{c}} n&9\\ 2&1 \end{array}} \right]\)

Also, \(A = \left[ {\begin{array}{*{20}{c}} n&9\\ 2&1 \end{array}} \right]\)

∴ We cannot find the value of n from both statements together.

Each entry is the number of all possible matrices of 3 × 3 with 0 or 1, respectively.

  1. 9
  2. 18
  3. 27
  4. 512

Answer (Detailed Solution Below)

Option 4 : 512

Matrices Question 13 Detailed Solution

Download Solution PDF

Calculation:

As we know that

Number of possible entries of 3 × 3 = 9

And, every entry has two choices = 0 and 1

Now,

Total number of choices = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

⇒ 29

⇒ 512

∴ The total number of choices is 512.

If A is a square matrix such that A2 = I, then A3 + (A + I)2 - 9A - I- A2 is

  1. -10A
  2. 10A
  3. -6A
  4. 6A

Answer (Detailed Solution Below)

Option 3 : -6A

Matrices Question 14 Detailed Solution

Download Solution PDF

Concept:

Properties of identity matrix:

If A is the square matrix of order n × n

  • AI = IA = A
  • In = I           (Where n ∈ N)

 

Calculation:

Given

A2 = I

Now, A3 + (A + I)2 - 9A - I2 - A2

= A2. A + A2 + I2 + 2AI - 9A - I- A2

= I. A + I + I + 2AI - 9A - I - I           [∵ A2 = I and AI = IA = A]

= AI + 2AI - 9A 

= 3AI - 9A

= 3A - 9A

= - 6A

If A is an Involuntary matrix and I is a unit matrix of same order, then (I − A) (I + A) is

  1. A
  2. I
  3. 2A
  4. Zero matrix

Answer (Detailed Solution Below)

Option 4 : Zero matrix

Matrices Question 15 Detailed Solution

Download Solution PDF

Concept:

Involuntary matrix:

  • Matrix A is said to be Involuntary if A2 = I, where I is an Identity matrix of same order as of A.
  • Involuntary matrix is a matrix that is equal to its own inverse. ⇔ A-1 = A

 

Calculation:

Given that A is involuntary matrix,

⇒ A2 = I

Now,

(I − A) (I + A) = I2 – IA + AI − A2 

⇒ I – A + A – I         (∵ A2 = I)

0

∴ (I − A) (I + A) is zero matrix.
Get Free Access Now
Hot Links: teen patti stars teen patti rules teen patti rummy 51 bonus teen patti live teen patti joy vip