Skew Lines MCQ Quiz - Objective Question with Answer for Skew Lines - Download Free PDF
Last updated on Jul 10, 2025
Latest Skew Lines MCQ Objective Questions
Skew Lines Question 1:
If the shortest distance between the line joining the points(1, 2, 3) and (2, 3, 4), and the line \(\rm \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-2}{0}\) is α, then 28α2 is equal to____.
Answer (Detailed Solution Below) 18
Skew Lines Question 1 Detailed Solution
Calculation:
\(\rm \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+\hat{j}+\hat{k}) \quad \vec{r}=\vec{a}+\lambda \vec{p} \)
⇒ \(\rm \vec{r}=(+\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}-\hat{j}) \quad \vec{r}=\vec{b}+\mu \vec{q} \)
⇒ \(\rm \vec{p} × \vec{q}=\left|\begin{array}{ccc} \rm \hat{i} &\rm \hat{j} &\rm \hat{k} \\ 1 & 1 & 1 \\ 2 & -1 & 0 \end{array}\right|=\hat{i}+2 \hat{j}-3 \hat{k} \)
⇒ \(\rm d=\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} × \vec{q})}{|\vec{p} × \vec{q}|}\right| \)
⇒ \(\rm d=\left|\frac{(-3 \hat{j}-\hat{k}) \cdot(\hat{i}+2 \hat{j}-3 \hat{k})}{\sqrt{14}}\right| \)
\(=\left|\frac{-6+3}{\sqrt{14}}\right|=\frac{3}{\sqrt{14}} \)
⇒ \(α=\frac{3}{\sqrt{14}}\)
Now, 28α2 = 28× \(\frac{9}{14} = 18\)
Hence, the correct answer is 18.
Skew Lines Question 2:
The shortest distance between the lines x + 1 = 2y = -12z and x = y + 2 = 6z – 6 is
Answer (Detailed Solution Below)
Skew Lines Question 2 Detailed Solution
Calculation:
\(\rm \frac{x+1}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{\frac{-1}{12}}\) and \(\rm \frac{x}{1}=\frac{y+2}{1}=\frac{z-1}{\frac{1}{6}} \)
\(\rm \Rightarrow \text { Shortest distance }=\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \)
\(\rm \text { S.D. }=(-\hat{i}+2 \hat{j}-\hat{k}) \cdot \frac{(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\)
\(\left\{\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}} \equiv\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & \frac{1}{2} & \frac{-1}{12} \\ 1 & 1 & \frac{1}{6} \end{array}\right|=\frac{1}{6} \hat{\mathrm{i}}-\frac{1}{4} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}} \text { or } 2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}\right\}\)
\(\rm \text { S.D. }=\frac{(-\hat{i}+2 \hat{j}-\hat{k}) \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})}{\sqrt{2^{2}+3^{2}+6^{2}}}=\left|\frac{-14}{7}\right|=2\)
Hence, the correct answer is Option 1.
Skew Lines Question 3:
Shortest distance between the lines
\(\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5} \) and \( \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}\) is
Answer (Detailed Solution Below)
Skew Lines Question 3 Detailed Solution
Calculation:
\(\rm \frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5} \quad \vec{a}=\hat{i}-8 \hat{j}+4 \hat{k}\)
\(\rm \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3} \quad \vec{b}=\hat{i}+2 \hat{j}+6 \hat{k}\)
⇒ \(\overrightarrow{\mathrm{p}}=2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{q}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}\)
⇒ \(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{array}\right|\)
= \(\hat{\mathrm{i}}(16)-\hat{\mathrm{j}}(-16)+\hat{\mathrm{k}}(16)\)
= \(16(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
⇒ d = \(\left|\frac{(\mathrm{a}-\mathrm{b}) \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}\right|=\left|\frac{(-10 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot 16(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})}{16 \sqrt{3}}\right|\)
= \(\left|\frac{-12}{\sqrt{3}}\right|=4 \sqrt{3}\)
Hence, the correct answer is Option 2.
Skew Lines Question 4:
Line L1 passes through the point (1, 2, 3) and is parallel to z-axis. Line L2 passes through the point (λ , 5, 6) and is parallel to y-axis. Let for λ = λ1 , λ2 , λ2<λ1 , the shortest distance between the two lines be 3. Then the square of the distance of the point (λ1, λ2, 7) from the line L1 is
Answer (Detailed Solution Below)
Skew Lines Question 4 Detailed Solution
Calculation:
We have two Lines
⇒ \(L_1: \frac{x-1}{0} = \frac{y-2}{0} = \frac{z-3}{1}, \qquad\)
⇒ \(L_2: \frac{x-\lambda}{0} = \frac{y-5}{1} = \frac{z-6}{0}.\)
To find their shortest distance, form the determinant
⇒ \(\det \begin{pmatrix} \lambda-1 & 3 & 3\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix} = (\lambda-1)\det\!\begin{pmatrix}0&1\\1&0\end{pmatrix} -3\det\!\begin{pmatrix}0&1\\0&0\end{pmatrix} +3\det\!\begin{pmatrix}0&0\\0&1\end{pmatrix} \)
\(= -(\lambda-1). \)
⇒ \(\mathbf{d}_1\times\mathbf{d}_2 = \det \begin{pmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ 0&0&1\\ 0&1&0 \end{pmatrix} = -\,\mathbf{i}, \quad \bigl\|-\mathbf{i}\bigr\| = 1.\)
\(SD = \bigl|-(\lambda-1)\bigr| = |\lambda-1| = 3 \quad\Longrightarrow\quad \lambda = 1\pm 3 \quad\Longrightarrow\quad \lambda = 4 \text{ or } -2. \)
Foot of the perpendicular from P to L1
Take \(P(\lambda_1,\lambda_2,7) = (4,-2,7)\), A general point on L1 ay be written as Q ( \((1,2,\,3+t).\)
Then, \(\overrightarrow{PQ} = (1-4,\;2-(-2),\;(3+t)-7) = (-3,\,4,\,t-4).\)
Perpendicularity to L1 direction d1 = (0, 0, 1) gives
⇒ \(\overrightarrow{PQ}\cdot\mathbf{d}_1 = 0 \;\Longrightarrow\; (-3,4,t-4)\cdot(0,0,1)=0 \;\Longrightarrow\; t-4=0 \;\Longrightarrow\; t=4.\)
Thus, \(Q = (1,2,\,3+4) = (1,2,7).\)
⇒ \(PQ^2 = \|P-Q\|^2 = (4-1)^2 + (-2-2)^2 + (7-7)^2 = 3^2 + (-4)^2 + 0^2 \)
\(= 9 + 16 = 25. \)
Hence, the correct answer is Option 3.
Skew Lines Question 5:
If the square of the shortest distance between the lines \(\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}\) and \(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}\) is \(\frac{\mathrm{m}}{\mathrm{n}}\), where m, n are coprime numbers, then m + n is equal to:
Answer (Detailed Solution Below)
Skew Lines Question 5 Detailed Solution
Calculation
\(\vec{a}=(2,1,-3)\)
\(\overrightarrow{\mathrm{b}}=(-1,-3,-5)\)
\(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{array}\right|\)
= \(2 \hat{i}-\hat{\mathrm{j}}\)
\(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}=-3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}\)
\(S_{d}=\frac{|(\vec{b}-\vec{a}) \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})|}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}\)
= \(\frac{2}{\sqrt{5}}\)
\(\left(\mathrm{S}_{\mathrm{d}}\right)^{2}=\frac{4}{5}\)
m = 4, n = 5 ⇒ m + n = 9
Hence option 2 is correct
Top Skew Lines MCQ Objective Questions
Find the magnitude of the shortest distance between the lines \(\frac{x-0}{2} = \frac{y-0}{-3}=\frac {z-0}{1} \) and \(\frac{x-2}{3} = \frac{y-1}{-5}=\frac {z+2}{2} \).
Answer (Detailed Solution Below)
Skew Lines Question 6 Detailed Solution
Download Solution PDFConcept:
The magnitude of the shortest distance between the lines \( \vec{r_1} = \vec a_1 + \lambda \vec b_1\) and \(\vec{r_2} = \vec a_2 + \mu\vec b_2\) is
\(d = \left | \frac{(\vec b_1\times\vec b_2).(\vec a_2 - \vec a_1)}{|\vec b_1\times\vec b_2|} \right|\)
Given:
The lines \(\frac{x-0}{2} = \frac{y-0}{-3}=\frac {z-0}{1} \) and \(\frac{x-2}{3} = \frac{y-1}{-5}=\frac {z+2}{2} \).
Rewriting the given equations,
\( \vec{r_1} = \lambda(2\vec i-3\vec j+\vec k) \) and \( \vec{r_2} = (2\vec i+\vec j-2\vec k) + \mu(3\vec i-5\vec j+2\vec k) \)
⇒ \(\vec a_1=0\) , \(\vec b_1=2\vec i-3\vec j+\vec k\) and \(\vec a_2=2\vec i+\vec j-2\vec k\), \(\vec b_2=3\vec i-5\vec j+2\vec k\)
Therefore, the magnitude of the shortest distance between the given lines is
\(d = \left | \frac{(\vec b_1\times\vec b_2).(\vec a_2 - \vec a_1)}{|\vec b_1\times\vec b_2|} \right|\)
\(d = \left | \frac{[(2\vec i-3\vec j+\vec k)\times(3\vec i-5\vec j+2\vec k)].[(2\vec i+\vec j-2\vec k)-0]}{|(2\vec i-3\vec j+\vec k)\times(3\vec i-5\vec j+2\vec k)|} \right|\)
\(d = \left | \frac{(-\vec i-\vec j-\vec k).(2\vec i+\vec j-2\vec k)]}{|-\vec i-\vec j-\vec k|} \right|\)
\(d = \frac{1}{\sqrt{3}}\)
Therefore, the magnitude of the shortest distance between the given lines is \(\frac{1}{\sqrt3}\).
Let L1 and L2 be two parallel lines with the equations \(\rm \vec{r}=\vec{a}_1 +\lambda \vec{b}\) and \(\rm r=\vec{a}_2 + \mu\vec{b}\) respectively. The shortest distance between them is:
Answer (Detailed Solution Below)
Skew Lines Question 7 Detailed Solution
Download Solution PDFConcept:
- If two lines are parallel, then the distance between them is fixed.
- The distance between two parallel lines \(\rm \vec{r}=\vec{a}_1 +\lambda \vec{b}\) and \(\rm r=\vec{a}_2 + \mu\vec{b}\) is given by the formula: \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\).
Calculation:
Using the formula for the distance between two parallel lines, we can say that the distance is \(\rm d=\left|\dfrac{\vec{b}\times (\vec{a}_2-\vec{a}_1)}{|\vec{b}|}\right|\).
Find the shortest distance between the lines \(\frac{{x - 8}}{3} = \frac{{y + 9}}{{ - 16}} = \frac{{z - 10}}{7}\;\;and\;\frac{{x - 15}}{3} = \frac{{y - 29}}{8} = \frac{{z - 5}}{{ - 5}}\) ?
Answer (Detailed Solution Below)
Skew Lines Question 8 Detailed Solution
Download Solution PDFConcept:
The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:
\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)
Calculation:
Given: Equation of lines is \(\frac{{x - 8}}{3} = \frac{{y + 9}}{{ - 16}} = \frac{{z - 10}}{7}\;\;and\;\frac{{x - 15}}{3} = \frac{{y - 29}}{8} = \frac{{z - 5}}{{ - 5}}\)
By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get
⇒ x1 = 8, y1 = - 9, z1 = 10, a1 = 3, b1 = -16 and c1 = 7
Similarly, x2 = 15, y2 = 29, z2 = 5, a2 = 3, b2 = 8 and c2 = -5
So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 7&{38}&{ - 5}\\ 3&{ - 16}&7\\ 3&8&{ - 5} \end{array}} \right|\)
As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)
⇒ SD = 14 units
Hence, option B is the correct answer.
Find the shortest distance between the lines whose vector equations are \(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) and \(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\)
Answer (Detailed Solution Below)
Skew Lines Question 9 Detailed Solution
Download Solution PDFConcept:
The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)
Calculation:
L1: \(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+4\hat{k}+s(3 \hat{i}+4\hat{k})\).
L2: \(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+t(3 \hat{i}+4\hat{k})\).
Here, we see both lines are parallel and \(\vec{a_{1}}=2\hat{i}-3\hat{j}+4\hat{k}\) , \(\vec{a_{2}}= 2\hat{i}-3\hat{j}\) and \(\vec{b}= 3\hat{i}+4\hat{k}\).
\(\therefore \) The shortest distance between parallel lines L1 and L2:
\(d= \left | \frac{(3\hat{i}+4\hat{k})\times [(2\hat{i}-3\hat{j})-(2\hat{i}-3\hat{j}+4\hat{k})]}{|3\hat{i}+4\hat{k}|} \right | \)
⇒ \(d= \left | \frac{(3\hat{i}+4\hat{k})\times (-4\hat{k})}{\sqrt{9+16}} \right | \)
⇒ \(d= \left | \frac{12\hat{j}}{5} \right | \) ⇒ \(d= \frac{12}{5} =2.4\) unit.
Hence, option 1 is correct.
Find the shortest distance between the lines whose vector equations are \(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) and \(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\)
Answer (Detailed Solution Below)
Skew Lines Question 10 Detailed Solution
Download Solution PDFConcept:
The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)
Calculation:
L1: \(\vec{r}=(3s+2) \hat{i}-3\hat{j}+(4s+4)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+4\hat{k}+s(3 \hat{i}+4\hat{k})\).
L2: \(\vec{r}=(3t+2) \hat{i}-3\hat{j}+(4t)\hat{k}\) can be written as \(\vec{r}=2 \hat{i}-3\hat{j}+t(3 \hat{i}+4\hat{k})\).
Here, we see both lines are parallel and \(\vec{a_{1}}=2\hat{i}-3\hat{j}+4\hat{k}\) , \(\vec{a_{2}}= 2\hat{i}-3\hat{j}\) and \(\vec{b}= 3\hat{i}+4\hat{k}\).
\(\therefore \) The shortest distance between parallel lines L1 and L2:
\(d= \left | \frac{(3\hat{i}+4\hat{k})\times [(2\hat{i}-3\hat{j})-(2\hat{i}-3\hat{j}+4\hat{k})]}{|3\hat{i}+4\hat{k}|} \right | \)
⇒ \(d= \left | \frac{(3\hat{i}+4\hat{k})\times (-4\hat{k})}{\sqrt{9+16}} \right | \)
⇒ \(d= \left | \frac{12\hat{j}}{5} \right | \) ⇒ \(d= \frac{12}{5} =2.4\) unit.
Hence, option 1 is correct.
Find the shortest distance between the lines \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)
Answer (Detailed Solution Below)
Skew Lines Question 11 Detailed Solution
Download Solution PDFConcept:
The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\) and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by:\(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)
Calculation:
Here we have to find the shortest distance between the lines \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)
Let line L1 be represented by the equation \(\frac{x}{-1}=\frac{y-2}{0}=\frac{z}{1}\) and line L2 be represented by the equation \(\frac{x+2}{1}=\frac{y}{1}=\frac{z}{0}\)
⇒ x1 = 0, y1 = 2, z1 = 0 and a1 = -1, b1 = 0, c1 = 1.
⇒ x2 = -2, y2 = 0, z2 = 0 and a2 = 1, b2 = 1, c2 = 0.
∵ The shortest distance between the lines is given by: \(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)
⇒ \(d= \frac{\begin{vmatrix} -2-0 &0-2&0-0 \\ -1& 0 & 1\\ 1& 1 & 0 \end{vmatrix}}{\sqrt{(0-1)^{2}+(0-1)^{2}+(-1-0)^{2}}}\)
⇒ \(d= \frac{\begin{vmatrix} -2 &-2&0 \\ -1& 0 & 1\\ 1& 1 & 0 \end{vmatrix}}{\sqrt{1+1+1}}\)
⇒ d = 0
Hence, option 4 is correct.
If the shortest distance between parallel lines \(\vec{r}= \hat{i}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\) and \(\vec{r}= \hat{i}+2\hat{j}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\). is \( \sqrt \frac{{k}}{{7}} \) then k?
Answer (Detailed Solution Below)
Skew Lines Question 12 Detailed Solution
Download Solution PDFConcept:
The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)
Calculation:
Given: Equation of lines \(\vec{r}= \hat{i}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\) and \(\vec{r}= \hat{i}+2\hat{j}+\hat{2k}+ \lambda ( \hat{i}+2\hat{j}+3\hat{k} )\).
So, by comparing the above equations with \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) we get
⇒ \(\vec{a_{1}}= \hat{i}+2\hat{k}\) , \(\vec{a_{2}}= \hat{i}+2\hat{j}+2\hat{k}\) and \(\vec{b}= \hat{i}+2\hat{j}+3\hat{k}\).
\(\therefore \) The shortest distance between parallel lines \(\vec{r}= \vec{a_{1}}+ \lambda \vec{b} \) and \(\vec{r}= \vec{a_{2}}+ \mu \vec{b} \) is given by: \(d= \left | \frac{\vec{b}\times (\vec{a_{2}}-\vec{a_{1}})}{|b|} \right | \)
\(⇒ d= \left | \frac{(\hat{i}+2\hat{j}+3\hat{k})\times [(\hat{i}+2\hat{j}+2\hat{k})-(\hat{i}+2\hat{k})]}{|\hat{i}+2\hat{j}+3\hat{k}|} \right | \)
⇒ \(d= \left | \frac{(\hat{i}+2\hat{j}+3\hat{k})\times 2\hat{j}}{|\sqrt{1+4+9}|} \right | \)
⇒ \(d= \left | \frac{2\hat{k}-6\hat{i}}{\sqrt{14}} \right | \)
⇒ \(d = \sqrt \frac{{40}}{{14}}\)
\(\Rightarrow d = \sqrt \frac{{40}}{{14}} \) \(\Rightarrow d = \sqrt \frac{{20}}{{7}} \)
⇒ k = 20
Hence, option 4 is correct.
Find the shortest distance between the lines \(\frac{{x + 3}}{{ - \;4}} = \frac{{y - 6}}{3} = \frac{z}{2}\;and \ \frac{{x + 2}}{{ - \;4}} = \frac{y}{1} = \frac{{z - 7}}{1}\)
Answer (Detailed Solution Below)
Skew Lines Question 13 Detailed Solution
Download Solution PDFConcept:
The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:
\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)
Calculation:
Given: Equation of lines is \(\frac{{x + 3}}{{ - \;4}} = \frac{{y - 6}}{3} = \frac{z}{2}\;and \ \frac{{x + 2}}{{ - \;4}} = \frac{y}{1} = \frac{{z - 7}}{1}\)
By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get
⇒ x1 = - 3, y1 = 6, z1 = 0, a1 = - 4, b1 = 3 and c1 = 2
Similarly, x2 = - 2, y2 = 0, z2 = 7, a2 = - 4, b2 = 1 and c2 = 1
So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&{ - \;6}&7\\ { - \;4}&3&2\\ { - \;4}&1&1 \end{array}} \right|\)
Similarly, \(\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} = \sqrt {81} = 9\)
As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)
\(\Rightarrow SD = \frac{{\left| {\begin{array}{*{20}{c}} 1&{ - \;6}&7\\ { - \;4}&3&2\\ { - \;4}&1&1 \end{array}} \right|}}{9} = \frac{{81}}{9} = 9\)
The shortest distance between the lines
\(\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3} \) and \( \frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2} \) is
Answer (Detailed Solution Below)
Skew Lines Question 14 Detailed Solution
Download Solution PDFConcept -
Shortest distance between two lines is:
d = \(\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|\)
Explanation -
The given lines are :
\(\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3}\) and \( \frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2}\)
So, \(\vec{b}_1=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
\(\vec{b}_2=3 \hat{i}+4 \hat{j}+2 \hat{k}\)
\(\vec{a}_1=4 \hat{i}-2 \hat{j}-3 \hat{k}\), \( \vec{a}_2=\hat{i}+3 \hat{j}+4 \hat{k}\)
∴ \(\vec{b}_1 \times \vec{b}_2=\left|\begin{array}{lll} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & 3 \\ 3 & 4 & 2 \end{array}\right|\)
= \((10-12) \hat{i}-(8-9) \hat{j}+(16-15) \hat{k}\)
= \(-2 \hat{i}+\hat{j}+\hat{k}\)
Shortest distance, \(d=\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|\)
= \(\left|\frac{(3 \hat{i}-5 \hat{j}-7 \hat{k}) \cdot(-2 \hat{i}+\hat{j}+\hat{k})}{\sqrt{4+1+1}}\right|\)
= \(\left|\frac{-6-5-7}{\sqrt{6}}\right|=\frac{18}{\sqrt{6}}=3 \sqrt{6}\) units
Hence Option (2) is correct.
Find the shortest distance between the lines \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
Answer (Detailed Solution Below)
Skew Lines Question 15 Detailed Solution
Download Solution PDFConcept:
The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\) and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by:\(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)
Calculation:
Here we have to find the shortest distance between the lines \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
Let line L1 be represented by the equation \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and line L2 be represented by the equation \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
⇒ x1 = 5, y1 = -2, z1 = 0 and a1 = 7, b1 = -5, c1 = 1.
⇒ x2 = 0, y2 = 0, z2 = 0 and a2 = 1, b2 = 2, c2 = 3.
∵ The shortest distance between the lines is given by: \(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)
⇒ \(d= \frac{\begin{vmatrix} 0-5 &0+2&0-0 \\ 7& -5 & 1\\ 1& 2 & 3 \end{vmatrix}}{\sqrt{(-15-2)^{2}+(1-21)^{2}+(14+5)^{2}}}\)
⇒ \(d= \frac{\begin{vmatrix} -5 &2&0 \\ 7& -5 & 1\\ 1& 2 & 3 \end{vmatrix}}{\sqrt{(-17)^{2}+(-20)^{2}+(19)^{2}}}\)
⇒ \(d= \frac{-5(-15-2)-2(21-1)}{\sqrt{289+400+361}}\)
⇒ \(d= \frac{85-40}{\sqrt{1050}} = \frac{9}{\sqrt {42}}\)
Hence, option 3 is correct.