Question
Download Solution PDFयदि S1, S2,.... Sn उन गुणोत्तर श्रेढियों के योग हैं, जिनके प्रथम पद क्रमशः 1, 2, 3, ....n हैं एवं सार्व अनुपात क्रमशः \(\frac{1}{2},\frac{1}{3}.\frac{1}{4},...,\frac{1}{{n + 1}}\) है, ताे (S1 + S2 + S3 + ... + Sn) किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
श्रेणी 1 = \( 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\)
श्रेणी 2 = \( 2+2\times\frac{1}{3}+2\times\frac{1}{3^2}+2\times\frac{1}{3^3}+...\)
श्रेणी n = \( n+n\times\frac{1}{n+1}+n\times\frac{1}{(n+1)^2}+n\times\frac{1}{(n+1)^3}+...\)
अवधारणा:
अनंत गुणोत्तर श्रेढियों का योग, S∞ = \( \frac{a}{1-r}\) , जब |r| < 1
समांतर श्रेढ़ी का योग, SAP = \(\frac{n(a+l)}{2}\) , जहाँ, \(l\) =श्रेणी का अंतिम पद
गणना:
श्रेणी 1 के लिए, a = 1 और r = \(\frac{1}{2}\)
∴ S1 = \(\frac{a}{1-r}\) = \(\frac{1}{1-\frac{1}{2}}\)
⇒ S1 = 2
इसी प्रकार, श्रेणी 2 के लिए, a = 2 और r = \(\frac{1}{3}\)
∴ S1 = \(\frac{2}{1-\frac{1}{3}}\)
⇒ S2 = 3
इसी प्रकार,
S3 = 4
S4 = 5, ...
Sn = n + 1
इसलिए, S1, S2, S3, ... , Sn एक अंकगणितीय प्रगति (A.P.) है,
समांतर श्रेढ़ी के लिए,
a = S1 = 2
n = n
\(l\) = Sn = n + 1,
इस प्रकार,
(S1 + S2 + S3 + ... + Sn) = \( \frac{n(a+l)}{2} = \frac{n(2+n+1)}{2}\)
∴ ( S1 + S2 + S3 + ... + Sn ) = \(\frac{n(n+3)}{2}\)
Last updated on Jul 18, 2025
-> The latest RPSC 2nd Grade Teacher Notification 2025 notification has been released on 17th July 2025
-> A total of 6500 vacancies have been declared.
-> The applications can be submitted online between 19th August and 17th September 2025.
-> The written examination for RPSC 2nd Grade Teacher Recruitment (Secondary Ed. Dept.) will be communicated soon.
->The subjects for which the vacancies have been released are: Hindi, English, Sanskrit, Mathematics, Social Science, Urdu, Punjabi, Sindhi, Gujarati.