Indefinite Integrals MCQ Quiz - Objective Question with Answer for Indefinite Integrals - Download Free PDF
Last updated on Jul 18, 2025
Latest Indefinite Integrals MCQ Objective Questions
Indefinite Integrals Question 1:
Comprehension:
Directions:
If \(\int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + D \), then
Find the value of c
Answer (Detailed Solution Below)
Indefinite Integrals Question 1 Detailed Solution
Calculation:
\( \int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + D \)
On differentiating both sides, we get
\( x^2 e^{-2x} = e^{-2x} (2ax + b) + (ax^2 + bx + c)(-2e^{-2x}) \)
\( = e^{-2x} \left[ -2ax^2 + 2(a - b) \right] + (x + b - 2c) \)
\( \Rightarrow a = 1, 2(a - b) = 0, b - 2c = 0 \)
\( \Rightarrow a = 1, b = 1 \text{ and } c = \frac{1}{2} \)
Hence, the correct answer is Option 4.
Indefinite Integrals Question 2:
Comprehension:
Directions:
If \(\int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + D \), then
Find the value of b
Answer (Detailed Solution Below)
Indefinite Integrals Question 2 Detailed Solution
Calculation:
\( \int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + D \)
On differentiating both sides, we get
\( x^2 e^{-2x} = e^{-2x} (2ax + b) + (ax^2 + bx + c)(-2e^{-2x}) \)
\( = e^{-2x} \left[ -2ax^2 + 2(a - b) \right] + (x + b - 2c) \)
\( \Rightarrow a = 1, 2(a - b) = 0, b - 2c = 0 \)
\( \Rightarrow a = 1, b = 1 \text{ and } c = \frac{1}{2} \)
Hence, the correct answer is Option 3.
Indefinite Integrals Question 3:
Comprehension:
Directions:
If \(\int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + D \), then
The value of a is
Answer (Detailed Solution Below)
Indefinite Integrals Question 3 Detailed Solution
Calculation:
\( \int x^2 e^{-2x} \, dx = e^{-2x} (ax^2 + bx + c) + D \)
On differentiating both sides, we get
\( x^2 e^{-2x} = e^{-2x} (2ax + b) + (ax^2 + bx + c)(-2e^{-2x}) \)
\( = e^{-2x} \left[ -2ax^2 + 2(a - b) \right] + (x + b - 2c) \)
\( \Rightarrow a = 1, 2(a - b) = 0, b - 2c = 0 \)
\( \Rightarrow a = 1, b = 1 \text{ and } c = \frac{1}{2} \)
Hence, the correct answer is Option 1.
Indefinite Integrals Question 4:
Let \(\rm f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x\).
If \(\rm f(3)=\frac{1}{2}\left(\log _{e} 5-\log _{e} 6\right)\), then f(4) is equal to
Answer (Detailed Solution Below)
Indefinite Integrals Question 4 Detailed Solution
Calculation:
We know that the integral is of the form:
\( f(x) = \frac{1}{2} \log_e \left( \frac{x^2 + 3}{x^2 + 1} \right) + C \)
Now, we substitute the given value of f(3) to find the constant C :
⇒ \( f(3) = \frac{1}{2} \log_e \left( \frac{6}{5} \right) + C \)
We are given that:
⇒ \( f(3) = \frac{1}{2} (\log_e 5 - \log_e 6) \)
Equating the two expressions for f(3):
⇒ \( \frac{1}{2} \log_e \left( \frac{6}{5} \right) + C = \frac{1}{2} (\log_e 5 - \log_e 6) \)
Since both sides are equal, we conclude that C = 0 .
Thus, the function becomes:
⇒ \( f(x) = \frac{1}{2} \log_e \left( \frac{x^2 + 3}{x^2 + 1} \right) \)
Now, we can calculate f(4):
⇒ \( f(4) = \frac{1}{2} \log_e \left( \frac{16 + 3}{16 + 1} \right) = \frac{1}{2} \log_e \left( \frac{19}{17} \right) \)
Thus, the value of f(4) is:
⇒ \( \frac{1}{2} \log_e \left( \frac{19}{17} \right) \)
\( \frac{1}{2} (\log_e 19 - \log_e 17) \)
Hence, the correct answer is Option 1.
Indefinite Integrals Question 5:
\(\text{Let } f(x) = \int x^3 \sqrt{3 - x^2} \, dx. \text{ If } 5f(\sqrt{2}) = -4, \text{ then } f(1) \text{ is equal to} \\\)
Answer (Detailed Solution Below)
Indefinite Integrals Question 5 Detailed Solution
Calculation:
\(\text{Let } 3 - x^2 = t^2 \)
⇒ \(-2x\, dx = 2t\, dt \)
⇒ \(x\, dx = -t\, dt\)
⇒ \(x^2 = 3 - t^2\)
⇒ \(f(x) = \int x^2 \sqrt{3 - x^2} \cdot x\, dx\)
\(= \int (3 - t^2) \cdot t \cdot (-t\, dt) + c\)
\(= \int (t^4 - 3t^2) dt + c\)
\(= \frac{t^5}{5} - t^3 + c \)
\(f(x) = \frac{(3 - x^2)^{5/2}}{5} - (3 - x^2)^{3/2} + c\)
⇒ \(f(\sqrt{2}) = \frac{(3 - 2)^{5/2}}{5} - (3 - 2)^{3/2} + c\)
\(= \frac{1^{5/2}}{5} - 1^{3/2} + c = \frac{1}{5} - 1 + c = -\frac{4}{5} \)
⇒ \(\frac{1}{5} - 1 + c = -\frac{4}{5}\)
⇒ \(-\frac{4}{5} + c = -\frac{4}{5}\)
C = 0
\(f(x) = \frac{(3 - x^2)^{5/2}}{5} - (3 - x^2)^{3/2}\)
⇒ \(f(1) = \frac{(3 - 1)^{5/2}}{5} - (3 - 1)^{3/2}\)
\(= \frac{2^{5/2}}{5} - 2^{3/2}\)
\(= 2^{3/2} \left(\frac{2^{2/2}}{5} - 1\right) = 2 \sqrt{2} \left(\frac{2}{5} - 1\right)\)
\(= 2 \sqrt{2} \left(-\frac{3}{5}\right) = - \frac{6 \sqrt{2}}{5}\)
Hence, the Correct answer is Option 4.
Top Indefinite Integrals MCQ Objective Questions
Evaluate \(\rm \int cos^2 x\;dx\)
Answer (Detailed Solution Below)
Indefinite Integrals Question 6 Detailed Solution
Download Solution PDFConcept:
1 + cos 2x = 2cos2 x
1 - cos 2x = 2sin2 x
\(\rm \int \cos x\;dx = \sin x + c\)
Calculation:
I = \(\rm \int cos^2 x\;dx\)
= \(\rm \int \frac{1+\cos 2x}{2}\;dx\)
= \(\rm \frac{1}{2}\int (1+\cos 2x)\;dx\)
= \(\rm \frac{1}{2} \left[x+\frac{\sin 2x}{2} \right ] + c\)
= \(\rm \frac{x}{2}+\frac{\sin 2x}{4} + c\)
\(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\) is equal to ?
Answer (Detailed Solution Below)
Indefinite Integrals Question 7 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \frac{1}{\sqrt{a^2-x^2}}dx= \sin^{-1 } \left(\frac{x}{a} \right ) + c\)
Calculation:
I = \(\rm \int \frac {1}{\sqrt{16-25x^2}}dx\)
= \(\rm \int \frac {1}{\sqrt{16-(5x)^2}}dx\)
Let 5x = t
Differentiating with respect to x, we get
⇒ 5dx = dt
⇒ dx = \(\rm \frac {dt}{5}\)
Now,
I = \(\rm \frac {1}{5}\int \frac {1}{\sqrt{4^2-t^2}} dt\)
= \(\rm \frac 1 5 \sin^{-1} \left(\frac t 4 \right)\) + c
= \(\rm \frac 1 5 \sin^{-1} \left(\frac {5x} {4} \right)\) + c
\(\rm \int \sqrt{2x+3}\;dx\) is equal to?
Answer (Detailed Solution Below)
Indefinite Integrals Question 8 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^n dx = \frac{x^{n+1}}{n+1} +c\)
Calculation:
I = \(\rm \int \sqrt{2x+3}\;dx\)
Let 2x + 3 = t2
Differenating with respect to x, we get
⇒ 2dx = 2tdt
⇒ dx = tdt
Now,
I = \(\rm \int \sqrt{t^2}\; \times tdt\)
= \(\rm \int t^2 \;dt\)
= \(\rm \frac {t^3}{3} + c\)
∵ 2x + 3 = t2
⇒ (2x + 3)1/2 = t
⇒ (2x + 3)3/2 = t3
⇒ I = \(\rm \frac {(2x+3)^{3/2}}{3} + c\)
\(\rm \int \sin 5x\;dx = \)
Answer (Detailed Solution Below)
Indefinite Integrals Question 9 Detailed Solution
Download Solution PDFConcept:
\(\rm \int \sin x \; dx = -\cos x + c\)
Calculation:
I = \(\rm \int \sin 5x\;dx \)
Let 5x = t
Differentiating with respect to x, we get
⇒ 5dx = dt
⇒ dx = \(\rm \frac{dt}{5} \)
Now,
I = \(\rm \frac 1 5 \int \sin t\;dt \)
= \(\rm \frac 1 5 (-\cos t) + c\)
= \(\rm \frac{-\cos 5x}{5} + c\)
The value of \(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx\) will be ______, where C is an arbitrary constant.
Answer (Detailed Solution Below)
Indefinite Integrals Question 10 Detailed Solution
Download Solution PDFConcept:
From the Standard integral:
\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHRiI8daWcaaWdaeaapeGaamizaiaadIhaa8aabaWdbiaadIha % paWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaadggapaWaaWbaaS % qabeaapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaaGymaaWd % aeaapeGaaGOmaiaadggaaaGaamiBaiaad+gacaWGNbWaaqWaa8aaba % Wdbmaalaaapaqaa8qacaWG4bGaeyOeI0IaamyyaaWdaeaapeGaamiE % aiabgUcaRiaadggaaaaacaGLhWUaayjcSdaaaa!4EB0! \smallint \frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}log\left| {\frac{{x - a}}{{x + a}}} \right|\)\(\smallint \frac{{{dx}}}{{{x^2} - a^2}}=\frac{1}{2a}log \ |\frac{x-a}{x+a}|+C, \ x>a\)
Calculation:
\(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx\)
\(\smallint \frac{{{e^x}}}{{({e^{x})^2} - (2)^2}}dx\)
let t = ex
dt = ex dx
\(\smallint \frac{{{dt}}}{{({t)^2} - (2)^2}}\)
From the standard integral:
\(% MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHRiI8daWcaaWdaeaapeGaamizaiaadIhaa8aabaWdbiaadIha % paWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaadggapaWaaWbaaS % qabeaapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaaGymaaWd % aeaapeGaaGOmaiaadggaaaGaamiBaiaad+gacaWGNbWaaqWaa8aaba % Wdbmaalaaapaqaa8qacaWG4bGaeyOeI0IaamyyaaWdaeaapeGaamiE % aiabgUcaRiaadggaaaaacaGLhWUaayjcSdaaaa!4EB0! \smallint \frac{{dx}}{{{x^2} - {a^2}}} = \frac{1}{{2a}}log\left| {\frac{{x - a}}{{x + a}}} \right|\)\(\smallint \frac{{{dt}}}{{({t)^2} - (2)^2}}=\frac{1}{4}log \ |\frac{t-a}{t+a}|+C\)
Put t = ex in the above equation, we get:
\(\smallint \frac{{{e^x}}}{{{e^{2x}} - 4}}dx=\frac{1}{4}\log \left| {\frac{{{e^x} - 2}}{{{e^x} + 2}}} \right| + C\)
Note:
Some important formulas of integration are:
\(\smallint \frac{{{dx}}}{{{a^2} - x^2}}=\frac{1}{2a}log \ |\frac{a+x}{a-x}|+C, \ x
\(\smallint \frac{{{dx}}}{{{\sqrt{{a^2} - x^2}}}}=sin^{-1}(\frac{x}{a})+C\)
\(\smallint \frac{{{dx}}}{{{\sqrt{{x^2} + a^2}}}}=log (\ x + \sqrt{a^2+x^2})+C\)
Evaluate: \(\smallint \frac{{\sin {\rm{x}}}}{{{{\left( {\cos {\rm{x}}} \right)}^3}}}{\rm{dx}}\)
Answer (Detailed Solution Below)
Indefinite Integrals Question 11 Detailed Solution
Download Solution PDFConcept:
- \(\smallint {\rm{se}}{{\rm{c}}^2}{\rm{x\;dx}} = \tan {\rm{x}} + {\rm{\;C}}\)
- \(\smallint \sec {\rm{x}}\tan {\rm{x\;dx}} = \sec {\rm{x}} + {\rm{c}}\)
Calculation:
Let I = \(\smallint \frac{{\sin {\rm{x}}}}{{{{\left( {\cos {\rm{x}}} \right)}^3}}}{\rm{dx}}\)
\( = {\rm{\;}}\smallint \tan {\rm{x\;}}{\sec ^2}{\rm{x\;dx}}\)
Let tan x = t
⇒ sec2x dx = dt
Therefore, the integral becomes.
\(= {\rm{\;}}\smallint {\rm{t\;dt}}\)
\( = \frac{{{{\rm{t}}^2}}}{2} + {\rm{\;C}}\)
Re-substitute t = tan x.
Thus,
\( = {\rm{\;}}\frac{{{{\tan }^2}{\rm{x}}}}{2} + {\rm{\;C}}\)
What is the integral of f(x) = 1 + x2 + x4 with respect to x2?
Answer (Detailed Solution Below)
Indefinite Integrals Question 12 Detailed Solution
Download Solution PDFConcept:
\(\rm \int x^{n}\space dx = \frac{x^{n + 1}}{n + 1} + C\)
\(\rm \int f(x) \space dx^2\) = \(\rm \int (1 + x^{2} + x^{4}) \space d(x^2)\) ....(i)
Calculation:
Let, x2 = u
From equation (i)
\(\rm \int f(x) \space dx^2\) = \(\rm \int (1 + u + u^{2}) \space du\)
⇒ u + \(\rm \frac{u^{2}}{2}\) + \(\rm \frac{u^{3}}{3}\)+ C
Now putting the value of u,
⇒ \(\rm \int f(x)dx^2\) = x2 + \(\rm \frac{x^{4}}{2}\) + \(\rm \frac{x^{6}}{3}\) + C
∴ The required integral is x2 + \(\rm \frac{x^{4}}{2}\) + \(\rm \frac{x^{6}}{3}\) + C.
What is \(\smallint {\sin ^3}x\cos x\;dx\) equal to?
Answer (Detailed Solution Below)
Indefinite Integrals Question 13 Detailed Solution
Download Solution PDFConcept:
- \(\smallint {{\rm{x}}^{\rm{n}}}{\rm{dx}} = {\rm{\;}}\frac{{{{\rm{x}}^{\rm{n}+1}}}}{{\rm{n+1}}} + {\rm{c}}\)
Calculation:
Let I = \(\smallint {\sin ^3}x\cos x\;dx\)
Let sin x = t
Now differentiating both sides, we get
⇒ cos x dx = dt
Now,
\({\rm{I\;}} = \smallint {\sin ^3}{\rm{x}}\cos {\rm{x\;dx}} = {\rm{\;}}\smallint {{\rm{t}}^3}{\rm{dt}} = {\rm{\;}}\frac{{{{\rm{t}}^4}}}{4} + {\rm{c}}\)
\(\Rightarrow {\rm{I\;}} = {\rm{\;}}\frac{{{{\sin }^4}{\rm{x}}}}{4} + {\rm{c}} = {\rm{\;}}\frac{{{{\left( {1 - {{\cos }^2}{\rm{x}}} \right)}^2}}}{4} + {\rm{c\;}}\)
∴ Option 4 is correct answer
\(\int\frac{\cos2x}{\cos^2x.\sin^2x}dx= \ ?\)
Answer (Detailed Solution Below)
Indefinite Integrals Question 14 Detailed Solution
Download Solution PDFConcept:
- cos 2x = cos2 x - sin2 x
Calculation:
\(\int\frac{\cos2x}{\cos^2x.\sin^2x}dx\)
= \(\int\frac{cos^{2}x-sin^{2}x}{\cos^2x.\sin^2x}dx \)
= \(\int \left ( \frac{1}{sin^{2}x}-\frac{1}{cos^{2}x} \right )dx\)
= \(\int \frac{1}{\sin^{2}x}dx-\int \frac{1}{\cos^{2}x} dx\)
= \(\rm \int cosec^{2}xdx-\int sec^{2}x dx\)
= - cot x - tan x + C
\(\rm\displaystyle\int \dfrac{1}{1+e^x}dx\) is equal to
Answer (Detailed Solution Below)
Indefinite Integrals Question 15 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle\int \dfrac{1}{x}dx= \log x + c\)
Calculation:
\(\rm \text{Let I}=\displaystyle\int \dfrac{1}{1+e^x}dx \\=\rm\displaystyle\int \dfrac{e^{-x}}{e^{-x}+1}dx \)
Assume e-x + 1 = t
Differenatiang with respect to x, we get
⇒ -e-x dx = dt
∴ e-x dx = -dt
\(\rm =\displaystyle\int \dfrac{-dt}{t}\\= -\log t + c\\=-\log (e^{-x}+1)+c\\=\log \left(\frac{1}{e^{-x}+1} \right )+c\\=\log \left(\frac{e^x}{1+e^x} \right )+c\)